6.1 图的基本概念
-
知识点 1:
📝 无向图:
图G由顶点集V和边集E构成,若E是无向边(简称边) 的有限集合时,则图 G为无向图。
📝 顶点的度、入度、出度:
图中每个顶点的度定义为以该顶点为一个端点的边的数目。
对于无向图,顶点v的度是指依附于该顶点的边的条数,记为 TD(v)。
对于有向图,顶点v的度分为入度和出度,入度是以v为终点的有向边的数目,记为 ID(V)。出度是以v为起点的有向边的数目,记为 OD(v)。顶点v的度等于其入度和出度之和,即TD(v)=ID(v)+OD(v)。
📝 连通、连通图、连通分量:
在无向图中,若从顶点v到顶点w有路径存在,则称v和 w 是连通的。
若图 G 中任意两个顶点都是连通的,则称图 G 为连通图,否则为非连通图。
无向图中的极大连通子图称为连通分量。
📝 完全图:
在无向完全图中,任意两个顶点之间都存在边,共有 n(n-1)2 条边。
在有向完全图中,任意两个顶点之间都存在方向相反的两条弧,共有 n(n-1)条有向边。
📝 完全图与连通图的区别:
完全图要求任意一对顶点间均有边连接,而连通图只要求任意顶点间连通即有路径即可,并不一定有边连接这两顶点!
📝 简单路径、简单回路:
在路径序列中,顶点不重复出现的路径称为简单路径。
除第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路称为简单回路。
📝 稠密图、稀疏图:
-
- 【 2017 . 7 】
- 【 2017 . 7 】
-
- 解析:
- 解析:
-
-
【 2010. 7】
-
-
-
解析:
注意“可以形成连通图的最少边数”和“保证形成连通图的最少边数”的区别。
“可以形成连通图的最少边数”是n个顶点需要n-1条边即可。
“保证形成连通图的最少边数”是在问 7个顶点,在保证不连通的前提下最多能多少条边?就是6个顶点全连通+1个额外顶点无边即可。这样的情况下,再加一条边是肯定会导致其7顶点连通了。
而6个顶点全连通的最多边数是形成完全图的情况,即6✖️(6-1)= 15,所以15+1 = 16,答案选C。
-
-
- 【 2009. 7】
- 【 2009. 7】
-
-
解析:
设边为n条,那么所有顶点的度一定是2n,是偶数。
边数 = 顶点数-1的情况下同样可以保证连通。
反例,任意环保证连通,每个结点的度为2。
答案选A。
-
-
- 【 2011. 8】
- 【 2011. 8】
-
-
解析:
回路属于路径,简单回路对应着简单路径,故1错误。
稀疏图边比较少,用邻接矩阵存储会浪费大量空间,应用邻接表存储,故2错误。
拓扑序列相当于一个工程的安排顺序,如A指向B表示工程中活动A不完成B就无法开始,活动A完成B才开始&
-