选择题考点总结·第六章:图

本文详细介绍了图的基本概念,包括无向图、顶点的度、连通图、完全图和简单路径等。接着,讨论了图的存储方式和基本操作,重点讲解了BFS和DFS的遍历算法。最后,提到了图在实际问题中的应用,如生成树、最小生成树和最短路径问题,强调了普里姆和迪杰斯特拉算法的重要性。
摘要由CSDN通过智能技术生成

6.1 图的基本概念

  • 知识点 1:

    📝 无向图:

    图G由顶点集V和边集E构成,若E是无向边(简称边) 的有限集合时,则图 G为无向图。

    📝 顶点的度、入度、出度:

    图中每个顶点的度定义为以该顶点为一个端点的边的数目。

    对于无向图,顶点v的度是指依附于该顶点的边的条数,记为 TD(v)。

    对于有向图,顶点v的度分为入度和出度,入度是以v为终点的有向边的数目,记为 ID(V)。出度是以v为起点的有向边的数目,记为 OD(v)。顶点v的度等于其入度和出度之和,即TD(v)=ID(v)+OD(v)。

    📝 连通、连通图、连通分量:

    在无向图中,若从顶点v到顶点w有路径存在,则称v和 w 是连通的。

    若图 G 中任意两个顶点都是连通的,则称图 G 为连通图,否则为非连通图。

    无向图中的极大连通子图称为连通分量。

    📝 完全图:

    在无向完全图中,任意两个顶点之间都存在边,共有 n(n-1)2 条边。

    在有向完全图中,任意两个顶点之间都存在方向相反的两条弧,共有 n(n-1)条有向边。

    📝 完全图与连通图的区别:

    完全图要求任意一对顶点间均有边连接,而连通图只要求任意顶点间连通即有路径即可,并不一定有边连接这两顶点!

    📝 简单路径、简单回路:

    在路径序列中,顶点不重复出现的路径称为简单路径。

    除第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路称为简单回路。

    📝 稠密图、稀疏图:
    在这里插入图片描述

    • 【 2017 . 7 】
      在这里插入图片描述
    • 解析:
      在这里插入图片描述
    • 【 2010. 7】

      在这里插入图片描述

    • 解析:

      注意“可以形成连通图的最少边数”和“保证形成连通图的最少边数”的区别。

      “可以形成连通图的最少边数”是n个顶点需要n-1条边即可。

      “保证形成连通图的最少边数”是在问 7个顶点,在保证不连通的前提下最多能多少条边?就是6个顶点全连通+1个额外顶点无边即可。这样的情况下,再加一条边是肯定会导致其7顶点连通了。

      而6个顶点全连通的最多边数是形成完全图的情况,即6✖️(6-1)= 15,所以15+1 = 16,答案选C。

    • 【 2009. 7】
      在这里插入图片描述
    • 解析:

      设边为n条,那么所有顶点的度一定是2n,是偶数。

      边数 = 顶点数-1的情况下同样可以保证连通。

      反例,任意环保证连通,每个结点的度为2。

      答案选A。

    • 【 2011. 8】
      在这里插入图片描述
    • 解析:

      回路属于路径,简单回路对应着简单路径,故1错误。

      稀疏图边比较少,用邻接矩阵存储会浪费大量空间,应用邻接表存储,故2错误。

      拓扑序列相当于一个工程的安排顺序,如A指向B表示工程中活动A不完成B就无法开始,活动A完成B才开始&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值