hdu 4956 Poor Hanamichi(BC.R#5) 读懂了题意就是水题/坑- -比赛中居然没有过



Poor Hanamichi

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 175    Accepted Submission(s): 86


Problem Description
Hanamichi is taking part in a programming contest, and he is assigned to solve a special problem as follow: Given a range [l, r] (including l and r), find out how many numbers in this range have the property: the sum of its odd digits is smaller than the sum of its even digits and the difference is 3.

A integer X can be represented in decimal as:
\(X = A_n\times10^n + A_{n-1}\times10^{n-1} + \ldots + A_2\times10^2 + A_1\times10^1 + A_0\)
The odd dights are \(A_1, A_3, A_5 \ldots\) and \(A_0, A_2, A_4 \ldots\) are even digits.

Hanamichi comes up with a solution, He notices that:
\(10^{2k+1}\) mod 11 = -1 (or 10), \(10^{2k}\) mod 11 = 1,
So X mod 11
= \((A_n\times10^n + A_{n-1}\times10^{n-1} + \ldots + A_2\times10^2 + A_1\times10^1 + A_0) \mod 11\)
= \(A_n\times(-1)^n + A_{n-1}\times(-1)^{n-1} + \ldots + A_2 - A_1 + A_0\)
= sum_of_even_digits – sum_of_odd_digits
So he claimed that the answer is the number of numbers X in the range which satisfy the function: X mod 11 = 3. He calculate the answer in this way :
Answer = (r + 8) / 11 – (l – 1 + 8) / 11.

Rukaw heard of Hanamichi’s solution from you and he proved there is something wrong with Hanamichi’s solution. So he decided to change the test data so that Hanamichi’s solution can not pass any single test. And he asks you to do that for him.
 

Input
You are given a integer T (1 ≤ T ≤ 100), which tells how many single tests the final test data has. And for the following T lines, each line contains two integers l and r, which are the original test data. (1 ≤ l ≤ r ≤ \(10^{18}\))
 

Output
You are only allowed to change the value of r to a integer R which is not greater than the original r (and R ≥ l should be satisfied) and make Hanamichi’s solution fails this test data. If you can do that, output a single number each line, which is the smallest R you find. If not, just output -1 instead.
 

Sample Input
   
3 3 4 2 50 7 83
 

Sample Output
   
-1 -1 80
 

Source
 

题目大意:
有一个人在用一种方法来计算给定闭区间【l,r】内所有符合“奇数位的数之和比偶数位的数之和小三”的条件的数的个数。
关于奇数偶数位的说明
X=An×10n+An1×10n1++A2×102+A1×101+A0
The odd dights are A1,A3,A5 and A0,A2,A4 are even digits.

关于计算公式:
segma( A0,A2,A4…)-segma( A1,A3,A5)=3         (*1)

这个人的那种方法是
So X mod 11
= (An×10n+An1×10n1++A2×102+A1×101+A0)mod11
= An×(1)n+An1×(1)n1++A2A1+A0
= sum_of_even_digits – sum_of_odd_digits =3 (*2)

这个人认为对于一个数x,只要x mod 11==3,那么他就是符合条件的。

现在要求你找出新的最小的右端点r来改变区间范围,使得这个人的结论不成立。



解题思路:
这道题的意思极尽曲折,总的意思就是找出最小的一个数,这个数恰可以使得 (*2)成立,而 (*1)不成立
也就是 x mod 11==3但是(*1)不成立,这就是解题的关键了,把题意理解好就枚举就好了。


下面是ac代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#define maxn 160
using namespace std;
typedef unsigned __int64 LL;
LL l,r;
int main()
{
    int T;
    LL i,j,y=0;
    scanf("%d",&T);
    while(T--){
        scanf("%I64u %I64u",&l,&r);
        bool flag=false;
        for(i=l;i<=r;i+=1){
            if(i%11==3){
                y=i;
                LL res=0,ans=0;
                for(j=0;y>0;j++){
                    LL x=y%10;
                    y/=10;
                    if(j&1)res+=x;
                    else ans+=x;
                }
        //printf("%I64d %I64d %I64d\n",i,res,ans);
                if(res!=ans-3){
                    printf("%I64u\n",i);
                    flag=true;
                    break;
                }
            }
        }
        if(!flag) printf("-1\n");
    }
    return 0;
}


 
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页