筛
Cold_Chair
我XXX就是饿死,死外边,从这里跳下去,也不会再做你九条可怜一个测试点
展开
-
51nod 1238 最小公倍数之和 V3
题目描述:求: ∑ni=1∑nj=1lcm(i,j)\sum_{i = 1}^n \sum_{j = 1}^n lcm(i, j)题解:∑ni=1∑nj=1lcm(i,j)\sum_{i = 1}^n \sum_{j = 1}^n lcm(i, j) =(∑ni=1∑ij=1lcm(i,j))∗2−n∗(n+1)/2=(\sum_{i = 1}^n \sum_{j = 1}^i l原创 2017-07-03 19:14:35 · 715 阅读 · 0 评论 -
【GDOI2019模拟2019.2.23】签到
题目:题解:设是a[i]的倍数的限制为a,是b的倍数限制为b,f=1的限制为c。相当于求:a|b|c=a+b+c-a&b-a&c-b&c+a&b&c发现我们求a并不好求,考虑把所有的a改成!a=(n-!a)+b+c-(b-!a&b)-(c-!a&c)-(b&c)+(b&c-!a&b&c)=n...原创 2019-02-24 18:33:59 · 442 阅读 · 0 评论 -
51nod 1847 奇怪的数学题(Mobius反演+min_25筛+杜教筛+自然数幂和)
传送门.题解:设s(n)s(n)s(n)表示nn的最小质因子nn的最小质因子n \over n的最小质因子先小反演一下:∑ni=1∑nj=1sgcd(i,j)k∑i=1n∑j=1nsgcd(i,j)k\sum_{i=1}^n \sum_{j=1}^n sgcd(i,j)^k =∑nd=2s(d)k∗∑ni=1∑nj=1[gcd(i,j)=d]=∑d=2ns(d)k∗∑i=1n∑j...原创 2018-09-08 22:11:46 · 447 阅读 · 0 评论 -
min_25筛学习小记
min_25筛是洲阁筛的简化版,虽然我并不会洲阁筛。min_25筛可以筛一些特殊积性函数的前缀和,有些不是积性函数也可以筛,比如说最大真因子。同杜教筛一样,同时筛出了所有⌊ni⌋⌊ni⌋\lfloor {n \over i} \rfloor的前缀和。至于min_25能筛的积性函数有哪些要求,在博客后面会讨论所有时间复杂度证明见朱大佬2018国家预备队论文。筛的本质:1−n1...原创 2018-09-08 21:53:44 · 628 阅读 · 0 评论 -
最大真因数(min_25筛)
Description:一个合数的真因数是指这个数不包括其本身的所有因数,例如6 的正因数有 1; 2; 3; 6,其中真因数有1; 2; 3。一个合数的最大真因数则是这个数的所有真因数中最大 的一个,例如6 的最大真因数为3。 给定正整数l 和r,请你求出l 和r 之间(包括l 和r)所有合数的最大真因数之和。题解:考虑Min_25筛求质数和。求g的过程中,有一个枚举最...原创 2018-09-08 21:58:36 · 1320 阅读 · 0 评论 -
【GDOI2018Day1模拟4.17】呼吸决定
Description: 1<=n<=10^9,1<=m<=200000空间30720KB,时间1s,开O2题解:就是杜教筛+拉格朗日插值的结合题。考场时没有打完,可惜了。顺便回忆一下这两种算法。设s(n)=∑ni=1im∗μ(i)s(n)=\sum_{i=1}^n i^m*\mu(i)∑ni=1im∑j|iμ(j)\sum_{i=1}^n i^m\sum_{j|i} \mu(j) =∑ni=1原创 2018-04-19 20:51:54 · 459 阅读 · 0 评论 -
51nod 1220 约数之和
原题链接.题解:必要结论: σ(i∗j)=∑p|i∑q|jp∗jq(gcd(p,q)=1)σ(i*j)=\sum_{p|i} \sum_{q|j} p *{ j \over q} (gcd(p, q) =1) 证明: ∑p|i∑q|jp∗jq(gcd(p,q)=1)\sum_{p|i} \sum_{q|j} p *{ j \over q} (gcd(p, q) =1) =∑p|i∑q|jp∗原创 2017-10-09 18:52:37 · 436 阅读 · 0 评论 -
51nod 2026 Gcd and Lcm
原题链接.题目大意:设f(n)=∑d|nμ(d)∗df(n) = \sum_{d|n}μ(d)*d。 求∑ni=1∑nj=1f(gcd(i,j))∗f(lcm(i,j))\sum_{i = 1}^n \sum_{j = 1}^n f(gcd(i, j)) * f(lcm(i, j)) 1<=n<=1091<=n<=10^9题解:把μ(d)*d看作一个整体,这是一个积性函数,卷了一个恒等函数,那么原创 2017-09-02 15:21:37 · 887 阅读 · 0 评论 -
【GDOI2018模拟8.12】求和
Description: 1<=n<=10^10,k = 1、40题解:一看就是反演题,立马进行简单变形: 原式=∑kx=1∑nd=1fx(d)∗∑ni=1∑nj=1[gcd(i,j)=d]\sum_{x = 1}^k \sum_{d = 1}^n f_x(d) *\sum_{i = 1}^n \sum_{j = 1}^n [gcd(i, j) = d] =∑kx=1∑nd=1fx(d)∗∑⌊原创 2017-08-15 15:49:25 · 426 阅读 · 0 评论 -
51nod 1244 莫比乌斯函数之和
题目描述:求∑bi=aμ(i)\sum_{i = a}^b μ(i) 1<=a<=b<=10^10题解:杜教筛的裸题。 设s(n) = ∑ni=1μ(i)\sum_{i=1}^n μ(i)我们在学莫比乌斯反演的时候曾经证明过: ∑i|nμ(i)\sum_{i | n} μ(i) = (n = 1)∑ni=1∑j|iμ(i)\sum_{i=1}^n \sum_{j | i} μ(i) = 1原创 2017-06-19 19:23:30 · 593 阅读 · 0 评论 -
51nod 1239 欧拉函数之和
题目描述:求: ∑ni=1φ(i)\sum_{i = 1}^n φ(i) 1 <= n <= 10题解:杜教筛第二道裸题。必要结论: ∑i|nφ(i)=n\sum_{i|n} φ(i) = n证明: 设f(n) = ∑i|nφ(i)\sum_{i|n} φ(i) 将n分解质因数,n = ∏pqii\prod_{{p_i^{q_i}}} 利用莫比乌斯函数里学到的一个性质,可以得到: f(原创 2017-06-20 19:13:51 · 521 阅读 · 0 评论 -
51nod 1237 最大公约数之和 V3
题目大意:G=0;for(i=1;i<=N;i++)for(j=1;j<=N;j++){ G = (G + gcd(i,j)) % 1000000007;}题解:杜教筛。 这里提供两种反演姿势,之后我们会发现一个神奇的东西。 在此之前你得会杜教筛φ。反演1:∑ni=1∑nj=1gcd(i,j)\sum_{i = 1}^n \sum_{j = 1}^n gcd(i, j) =2∗原创 2017-06-23 12:47:34 · 568 阅读 · 0 评论 -
【NOI2017模拟3.19】Sum
Description:n<=1e10n<=1e10n<=1e10题解:设f[i]=∑j=1i∑k=1i[(i,j),(i,k)]f[i]=\sum_{j=1}^i\sum_{k=1}^i[(i,j),(i,k)]f[i]=∑j=1i∑k=1i[(i,j),(i,k)]不难(才怪)想到f[i]f[i]f[i]是一个积性函数。如何快速感性证明:我们...原创 2019-06-20 19:21:46 · 467 阅读 · 0 评论