【动态规划】求解编辑距离问题

问题描述

编辑距离问题是求解将⼀个字符串转换为另⼀个字符串所需的插⼊、删除、替换的最小次数。 C O M M O M → s u b C O M M U M → s u b C O M M U N → i n s C O M M U N E \mathbb{COMMOM} \overset{sub}{\rightarrow} \mathbb{COMMUM} \overset{sub}{\rightarrow}\mathbb{COMMUN} \overset{ins}{\rightarrow} \mathbb{COMMUNE} COMMOMsubCOMMUMsubCOMMUNinsCOMMUNE上述将单词 COMMOM 变为 COMMUNE 共需要经过至少3次操作。

对编辑距离进行可视化,可以得到序列比对

COMMOM-
COMMUNE
  • 第一行的空格表示插入
  • 第二行的空格表示删除
  • 具有不同字符的列表示替换

编辑距离 = 序列比对中具有不同字符的列数

最小编辑距离 = 最优序列比对中具有不同字符的列数

编辑距离问题也可以这么表述:
对于给定字符串 A [ 1... m ] A[1...m] A[1...m] B [ 1... n ] B[1...n] B[1...n] 求解他们的最小编辑距离 D ( m , n ) D(m,n) D(m,n)


递推关系

假设对 ∀ i < m , ∀ j < n \forall i<m,\forall j<n i<m,j<n,可以计算 A [ 1... i ] A[1...i] A[1...i] B [ 1... j ] B[1...j] B[1...j]的最小编辑距离 D ( i , j ) D(i,j) D(i,j)

COMMOM-
COMMUNE

考虑 A [ 1... m ] A[1...m] A[1...m] B [ 1... n ] B[1...n] B[1...n] 的最优比对,可以发现如下规律:

  1. 最后⼀列不可能是两个空格
  2. 某个串为空串时,最小编辑距离是另⼀个串的长度
  3. A [ m ] A[m] A[m] B [ n ] B[n] B[n] 都存在: D ( m , n ) = D ( m − 1 , n − 1 ) + ( A [ m ] = B [ n ] ? 0 : 1 ) D(m,n) =D(m − 1,n − 1) + (A[m] = B[n]?0 : 1) D(m,n)=D(m1,n1)+(A[m]=B[n]?0:1)
  4. A [ m ] A[m] A[m] B [ n ] B[n] B[n] 有一方为空,删除不为空的那一个: D ( m , n ) = { D ( m − 1 , n ) + 1 A [ m ] a n d − D ( m , n − 1 ) + 1 B [ n ] a n d − D(m,n) = \begin{cases} D(m − 1,n) + 1 & A[m]\quad and \quad- \\ D(m, n − 1) + 1 & B[n]\quad and \quad- \\ \end{cases} D(m,n)={D(m1,n)+1D(m,n1)+1A[m]andB[n]and
  5. 综上,只需要沿着三条路径递归得到最小的那条 D ( m , n ) = { i i f j = 0 j i f i = 0 min ⁡ { D ( m − 1 , n ) + 1 D ( m , n − 1 ) + 1 D ( m − 1 , n − 1 ) + ( A [ m ] = B [ n ] ? 0 : 1 ) o t h e r w i s e D(m,n) = \begin{cases} i &if\quad j=0\\ j &if\quad i=0 \\ \min \begin{cases} D(m − 1,n) + 1 \\ D(m, n − 1) + 1 \\ D(m − 1,n − 1) + (A[m] = B[n]?0 : 1) \end{cases} &otherwise \end{cases} D(m,n)= ijmin D(m1,n)+1D(m,n1)+1D(m1,n1)+(A[m]=B[n]?0:1)ifj=0ifi=0otherwise
  6. 时间复杂度: O ( m n ) O(mn) O(mn) ; 空间复杂度: O ( m n ) O(mn) O(mn)

运行实例

在这里插入图片描述
对于每个 D [ i , j ] D[i,j] D[i,j], 都可以通过 D [ i − 1 , j − 1 ] D[i-1,j-1] D[i1,j1]; D [ i − 1 , j ] D[i-1,j] D[i1,j]; D [ i , j − 1 ] D[i,j-1] D[i,j1]这三个点得到而这三个点又分别对应 替换;删除;插入三种操作。

通过上述递推关系,我们可以自上而下,自左向右构造记录表。在填完记录表后右下角的那个值即为最小编辑距离。接着就是使用回溯的方式,构造满足最小编辑距离的最优比对(如下图右侧所示)
在这里插入图片描述

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>

using namespace std;

// 计算最小编辑距离,并返回最小编辑距离的值,计算编辑距离表dp
int minEditDistance(const string& word1, const string& word2, vector<vector<int>>& dp) {
    int m = word1.length();
    int n = word2.length();

    for (int i = 0; i <= m; ++i) {
        for (int j = 0; j <= n; ++j) {
            if (i == 0) {
                dp[i][j] = j;
            }
            else if (j == 0) {
                dp[i][j] = i;
            }
            else if (word1[i - 1] == word2[j - 1]) {
                dp[i][j] = dp[i - 1][j - 1];
            }
            else {
                dp[i][j] = 1 + min({ dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1] });
            }
        }
    }

    return dp[m][n];
}

// 通过回溯法找到所有满足最小编辑距离的操作序列。
void findAllSequences(const string& word1, const string& word2, int i, int j, const string& sequence, vector<string>& sequences, vector<vector<int>>& dp) {
    if (i == 0 && j == 0) {
        sequences.push_back(sequence);
        return;
    }

    if (i > 0 && j > 0 && word1[i - 1] == word2[j - 1]) {
        findAllSequences(word1, word2, i - 1, j - 1, "No operation: " + string(1, word1[i - 1]) + " -> " + string(1, word2[j - 1]) + "\n" + sequence, sequences, dp);
    }

    if (i > 0 && j > 0 && dp[i][j] == dp[i - 1][j - 1] + 1) {
        findAllSequences(word1, word2, i - 1, j - 1, "Replace: " + string(1, word1[i - 1]) + " -> " + string(1, word2[j - 1]) + "\n" + sequence, sequences, dp);
    }

    if (i > 0 && dp[i][j] == dp[i - 1][j] + 1) {
        findAllSequences(word1, word2, i - 1, j, "Delete: " + string(1, word1[i - 1]) + " \n" + sequence, sequences, dp);
    }

    if (j > 0 && dp[i][j] == dp[i][j - 1] + 1) {
        findAllSequences(word1, word2, i, j - 1, "Insert: " + string(1, word2[j - 1]) + " \n" + sequence, sequences, dp);
    }
}

int main() {
    string word1 = "ALTRUISTIC";
    string word2 = "ALGORITHM";

    vector<vector<int>> dp(word1.length() + 1, vector<int>(word2.length() + 1, 0));

    int minDistance = minEditDistance(word1, word2, dp);

    cout << "Minimum Edit Distance between " << word1 << " and " << word2 << " is: " << minDistance << endl;

    vector<string> sequences;
    findAllSequences(word1, word2, word1.length(), word2.length(), "", sequences, dp);

    cout << "Operations to convert " << word1 << " to " << word2 << " are: " << endl;
    for (const string& seq : sequences) {
        cout << seq << "----------"<< endl;
    }

    return 0;
}

运行结果:

在这里插入图片描述


时空复杂度优化

现在我们已经可以计算最小编辑距离,同时构造出最优比对。他们的时空复杂度总结如下:

计算最小编辑距离构造最优比对
时间 O ( m n ) O(mn) O(mn) O ( m + n ) O(m+n) O(m+n)
空间 O ( m n ) O(mn) O(mn) O ( m n ) O(mn) O(mn)

从实际情况来看, O ( m n ) O(mn) O(mn) 的空间比 O ( m n ) O(mn) O(mn) 的时间更难满足,比如当 m = n = 1 0 5 m = n = 10^5 m=n=105

  • 时间上:执行 1 0 10 10^{10} 1010次指令大约需要10秒(假设CPU每秒执行 1 0 9 10^9 109条指令)
  • 空间上:需要 1 0 10 10^{10} 1010bits,大约 40 GB

那么能否使用 O ( m + n ) O(m+n) O(m+n) 的空间来构造最优比对呢?

答:可以使用 Hirschberg 算法。


Hirschberg 算法

Hirschberg 算法是一种高效的线性空间动态规划算法。它通过使用分治策略来降低空间复杂度,从而在线性空间内计算最优比对。

该算法的思想基于以下洞察力:

  • 在动态规划算法中,通常使用二维矩阵来存储中间状态,这导致了 O ( m n ) O(mn) O(mn) 的空间复杂度。
  • 但实际上,可以通过观察计算过程中的对称性,将动态规划的空间复杂度降低到 O ( m + n ) O(m+n) O(m+n)

在这里插入图片描述
在计算动态规划的过程中,我们观察到 D ( i , j ) D(i,j) D(i,j) 的计算仅依赖于 D ( i − 1 , j ) D(i-1,j) D(i1,j) D ( i , j − 1 ) D(i,j-1) D(i,j1) D ( i − 1 , j − 1 ) D(i-1,j-1) D(i1,j1)。基于此,我们可以利用两个长度为 n 的一维数组来存储中间状态,每次只需要保留上一行和当前行的信息。

  • 5
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
动态规划可以用来求解编辑距离问题编辑距离是指将一个字符串转换为另一个字符串所需的最小字符操作次数。字符操作包括删除一个字符、插入一个字符和将一个字符替换为另一个字符。 为了求解编辑距离,我们可以使用一个二维数组dp,其中dp[i][j]表示将字符串A的前i个字符转换为字符串B的前j个字符的最优编辑距离。 我们可以使用以下状态转移方程来计算dp数组的值: 1. 当i=0时,dp[j]表示将空字符串转换为字符串B的前j个字符的最优编辑距离,即插入操作的次数,所以dp[j]=j。 2. 当j=0时,dp[i]表示将字符串A的前i个字符转换为空字符串的最优编辑距离,即删除操作的次数,所以dp[i]=i。 3. 当A[i-1]=B[j-1]时,这两个字符相等,不需要进行任何操作,所以dp[i][j]=dp[i-1][j-1]。 4. 当A[i-1]!=B[j-1]时,可以进行三种操作:替换操作、插入操作和删除操作。dp[i][j]可以取这三种操作的最小值,即dp[i][j]=min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j])+1。 最后,dp[m][n]即为将字符串A转换为字符串B的最优编辑距离,其中m和n分别表示字符串A和字符串B的长度。 以下是使用动态规划解决编辑距离问题的示例代码: ```cpp string a = "sfdqxbw"; string b = "gfdgw"; int dp[MAXN][MAXN]; void solve() { int i, j; for (i = 1; i <= a.length(); i++) dp[i][0 = i; for (j = 1; j <= b.length(); j++) dp = j; for (i = 1; i <= a.length(); i++) { for (j = 1; j <= b.length(); j++) { if (a[i - 1 == b[j - 1]) dp[i][j = dp[i - 1][j - 1]; else dp[i][j = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1; } } } ``` 以上是使用动态规划求解编辑距离问题的方法。通过计算dp数组,我们可以得到将字符串A转换为字符串B的最小字符操作次数。<span class="em">1</span><span class="em">2</span> #### 引用[.reference_title] - *1* *2* [动态规划求解编辑距离问题](https://blog.csdn.net/weixin_42729072/article/details/105160948)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恭仔さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值