sheng的学习笔记-AI-k近邻学习(kNN)

AI目录:sheng的学习笔记-AI目录-CSDN博客

什么是k近邻学习

k近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法,是一种基本的分类与回归方法。

  • 分类问题:对新的样本,根据其 k 个最近邻的训练样本的类别,通过多数表决等方式进行预测。
  • 回归问题:对新的样本,根据其 k 个最近邻的训练样本标签值的均值作为预测值。

原理

基本原理

给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个“邻居”的信息来进行预测

通常,在分类任务中可使用“投票法”​,即选择这k个样本中出现最多的类别标记作为预测结果;

在回归任务中可使用“平均法”​,即将这k个样本的实值输出标记的平均值作为预测结果;

还可基于距离远近进行加权平均或加权投票,距离越近的样本权重越大

k近邻学习是惰性学习的代表

懒惰学习

在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理

急切学习

在训练阶段就对样本进行学习处理的方法

示意图

k是一个重要参数,当k取不同值时,分类结果会有显著不同。另一方面,若采用不同的距离计算方式,则找出的“近邻”可能有显著差别,从而也会导致分类结果有显著不同

错误概率

下面一坨公式,看得懂就看,看不懂记住结论:

最近邻分类器虽简单,但它的泛化错误率不超过贝叶斯最优分类器的错误率的两倍!

优缺点

  •  k近邻模型具有非常高的容量,这使得它在训练样本数量较大时能获得较高的精度。

  • 它的缺点有:

参考文章

5.knn - 一、k 近邻算法 - 《AI算法工程师手册》 - 书栈网 · BookStack

机器学习  书 

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值