求1~n的最小公倍数(LCM)

给你一个整数n,求出[1,n]所有数的最小公倍数,并对1000000007取模(1<=n<=10000000)

要求1~n的最小公倍数,首先要知道,互质的两个数的最小公倍数就是两个相乘,之后在考虑合数。

我们先使用筛法筛出质数,合数中又可以分为两类,一类是合数等于一个质数的k次方,也就是说他和其中一个质数的最小公倍数等于他本身,另一类则可以用质数和质数相乘表示,化简可以变成1。

举个例子,1-10的最小公倍数,lcm(1 2 3 4 5 6 7 8 9 10) 可以化为 lcm(1 1 1 1 5 1 7 8 9 1)相乘。

首先6是2和3的最小公倍数,所以2和3同时存在的时候,6就可以去掉,保留2和3即可。

10也同理,2和5就可以i表示10。

然后再来某个数字是某个素数的k次方的,当该数字存在时,他的那个素数因子就可以被去掉,例如4,8。因为8是2的3次方,4是2的2次方,当4存在的时候可以直接把2删去,当8存在的时候可以把4删去。

故而我们得到lcm[1,10]的最小公倍数为5*7*8*9 = 2520。

因此我们只需要用n以内所有质数的小于n的k次方那个数来替换质数即可。

#include<bits/stdc++.h>
using namespace std;
#define maxnum 10000051
bool Isprim[maxnum];
int  primes[maxnum];

int main(){
    unsigned long long nums = 1, n = 0,count_prime = 0,temp = 0;
    scanf("%lld",&n);
    memset(Isprim,1,sizeof(Isprim));
    Isprim[1] = false;
    for(unsigned long long i = 2;i<=n;i++){
        if(Isprim[i]){
            primes[count_prime] = i;
            count_prime++;
        }
        for(unsigned long long j = 0;j<count_prime&&(temp = primes[j]*i)<=n;j++){
            Isprim[temp] = false;
            if(i%primes[j]==0){
                break;
            }
        }
    }
 
    for(unsigned long long i = 0;i<count_prime;i++){
        unsigned long long emm = 1;
        while(emm<=n){//通过循环让emm从1开始不断乘以质数直到大于输入的数字n
            emm *= primes[i];//这时候让emm除以该质数就可以得到小于等于n的数
        }
        emm /= primes[i];
        primes[i] = emm;
    }
    for(unsigned long long i = 0;i<count_prime;i++){
        nums = nums*primes[i]%1000000007;
    }
    printf("%llu\n",nums);
    return 0;
}

这是萌新第一次写博客,不好请见谅,谢谢。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值