统计分析
colorknight
这个作者很懒,什么都没留下…
展开
-
moment, 一阶矩,二阶矩, 随机变量
在物理中,有力矩(moment of force)= F*L (力* 力臂)在概率统计中,有一阶矩,二阶矩, 三阶矩,四阶矩。不严格的讲,这个”矩“是用来描述 一个点集合的形状。比如,一维上的中点,二维上的一个椭圆,或是用来描述距离 中点(或 最高点)偏离情况。最常见的用法,一阶矩为均值 μ1二阶矩为方差,三阶矩为 Skewness(偏转载 2013-07-26 23:31:05 · 16560 阅读 · 0 评论 -
全距(Range)
转自:http://book.51cto.com/art/201004/193275.htm全距,又称极差,是数据的最大值(Maximum)与最小值(Minimum)之间的绝对差,借以表明总体标志值最大可能的差异范围。全距越长,说明数据越离散;反之,全距越小,说明数据越集中。用符号表示全距的计算公式为:全距的缺点在于其方法过于粗略,因为它只考虑总体两端数值的差异,没有考虑中转载 2013-07-27 00:01:26 · 3869 阅读 · 0 评论 -
众数(Mode)
转自:http://book.51cto.com/art/201004/193274.htm众数是指总体数据中出现次数最多的变量,用Mode表示。它同样不受数据极端值的影响,从而在一定程度上提高了平均水平的代表性。例如,制衣厂可以根据消费者所需服装尺码的众数来安排生产。此外,如果众数的值出现的频数或频率较大,那么说明众数的代表性就越高,数列的集中趋势也就越显著。确定众数没有明确的公转载 2013-07-26 23:59:47 · 2549 阅读 · 0 评论 -
中位数(Median)
转自:http://book.51cto.com/art/201004/193273.htm中位数是将总体数据的各个数值按大小顺序排列,居于中间位置的变量,用Median表示。中位数将所有的数据等分成两半,中位数两端的数据个数相同,因此它也被称为二分位数。中位数的确定,仅仅取决于它在数列中的位置,不受极端值的影响,因此可以用它表示总体的一般水平。同时,中位数比算术平均数具有更好的稳定性转载 2013-07-26 23:45:22 · 1719 阅读 · 0 评论 -
均值(Mean)和均值标准误差(S.E. Mean)
均值(平均数、平均值)表示的是某个变量所有取值的集中趋势或平均水平。例如,某班学生数学考试的平均成绩、公司员工的平均收入、某年级学生的平均身高、某高校高招录取平均分等。平均数有总体平均数和样本平均数之分。总体平均数:若一组数据X1,X2,……,XN代表一个大小为N的有限总体,则其总体平均数为: 样本平均数:若一组数据x转载 2013-07-26 23:55:23 · 37596 阅读 · 0 评论 -
四分位数(Quartiles)、十分位数(Deciles)和百分位数(Percentiles
转自:http://book.51cto.com/art/201004/193278.htm四分位数是将一组数据由小到大(或由大到小)排序后,用3个点将全部数据分为4等份,与这3个点位置上相对应的数值称为四分位数,分别记为Q1(第一四分位数)、Q2(第二四分位数,即中位数)、Q3(第三四分位数)。其中,Q3到Q1之间的距离的一半又称为四分位差,记为Q。四分位差越小,说明中间部分的数据越转载 2013-07-27 17:40:05 · 60544 阅读 · 0 评论 -
峰度(Kurtosis)和偏度(Skewness)
转自:http://book.51cto.com/art/201004/193277.htm峰度是描述总体中所有取值分布形态陡缓程度的统计量。这个统计量需要与正态分布相比较,峰度为0表示该总体数据分布与正态分布的陡缓程度相同;峰度大于0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰;峰度小于0表示该总体数据分布与正态分布相比较为平坦,为平顶峰。峰度的绝对值数值越大表示其分布形态的陡转载 2013-07-27 17:41:36 · 7980 阅读 · 0 评论 -
方差(Variance)和标准差(Standard Deviation)
转自:http://book.51cto.com/art/201004/193276.htm方差是总体所有变量值与其算术平均数偏差平方的平均值,它表示了一组数据分布的离散程度的平均值。标准差是方差的平方根,它表示了一组数据关于平均数的平均离散程度。 其中, 为总体平均数, 为样本平均数,N为总体的个数,n为样本的个数。虽然标准差有转载 2013-07-27 17:43:39 · 37506 阅读 · 1 评论