使用tensorflow利用神经网络分类识别MNIST手写数字数据集

本文介绍了如何使用TensorFlow通过神经网络对MNIST手写数字数据集进行分类识别。首先,详细说明了下载和加载MNIST数据集的过程,然后解释了神经网络的结构,包括输入层、隐藏层和输出层,并使用softmax回归计算类别概率。最后,展示了完整的训练代码及运行结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 下载MNIST数据集
当我们开始学习编程的时候,第一件事往往是学习打印”Hello World”。就好比编程入门有Hello World,机器学习入门有MNIST。
MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片:
这里写图片描述
每张图片大小为28*28,展开成一维行向量就是784维,即每张图片就是784维空间中的一个点。
tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们直接调用就可以了,代码如下:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

执行完成后,会在当前目录下新建一个文件夹MNIST_data, 下载的数据将放入这个文件夹内。下载的四个文件为:
这里写图片描述
每个子集都由两部分组成:图片部分(images)和标签部分(labels), 我们可以用下面的代码来查看 :

print(mnist.train.images
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值