- 博客(55)
- 收藏
- 关注
原创 【计算机网络笔记】第五章 网络层的控制平面
指在一个AS内部进行的路由,负责将数据包从源主机传递到同一AS内的目的主机。指在不同AS之间进行的路由,负责将数据包从一个AS传递到另一个AS。ping是最基础、最常用的网络诊断命令,依赖 ICMP 协议。它提供连通性、延迟、跳数三大关键信息。Ping 通 ≠ 服务可用;Ping 不通 ≠ 网络一定故障,需结合其他工具综合分析。
2025-12-13 21:26:35
1070
1
原创 【编译原理笔记】5.3 Intermediate Code Generation
摘要:中间代码在编译过程中扮演关键角色,作为连接编译器前端和后端的桥梁。它具有促进可移植性和优化两大核心作用,使编译器能支持多源语言和目标平台。三地址码是最主要的中间表示形式,包含九种基本指令类型,采用四元组、三元组等数据结构存储。文章详细阐述了表达式、数组、类型检查和控制流语句的翻译方法,比较了跳转编码和回填编码两种策略。通过具体示例展示了布尔表达式和循环语句的中间代码生成过程,揭示了回填机制如何解决跳转目标不确定的问题。这些技术共同构成了现代编译器中间代码生成的理论基础。
2025-12-07 21:23:15
802
原创 【编译原理笔记】5.2 SDT Schemes
本文介绍了语法树构建和语法制导翻译方案(SDT)的实现方法。语法树构建分为自底向上(适用于S-属性定义)和自顶向下(适用于L-属性定义)两种方式,分别使用Leaf()和Node()构造函数创建节点。SDT方案分为后缀SDT(适用于自底向上解析)和中缀SDT(动作可任意放置),通过语法树前序遍历执行语义动作。对于L-属性定义,继承属性计算动作需前置,综合属性动作置于产生式末尾。文章通过具体示例说明了这些技术的应用过程。
2025-12-04 20:12:37
662
原创 【编译原理笔记】5.1 SDD and SDT
本文摘要:语法符号属性分为综合属性和继承属性,用于在语法分析过程中传递语义信息。语义规则定义了属性值的计算方法,用于类型检查、中间代码生成等任务。语法指导定义(SDD)将语义规则附加到文法产生式上,分为S属性定义和L属性定义两种类型,分别适用于自底向上和自顶向下解析器。语法指导翻译(SDT)在SDD基础上加入受控副作用,实现具体的翻译过程。这些方法共同构成了编译器前端语义分析的基础框架。
2025-11-26 16:03:37
709
原创 【编译原理笔记】4.5 Bottom-up Parsing
本文系统介绍了自底向上语法分析技术,重点阐述了移进-归约分析中的冲突问题及解决方法。首先通过id*id实例展示了SLR分析表构造过程,包括增广文法、状态转移图和FOLLOW集计算。随后详细讲解了更强大的LR(1)分析方法,包括项目集构造算法、闭包计算和规范分析表生成。最后探讨了LALR的合并核心状态思想,并通过优先级解决冲突的实例(如运算符优先级和悬垂else问题)说明了二义性文法的处理策略。全文通过具体案例和算法伪代码,完整呈现了自底向上语法分析的核心技术体系。
2025-11-20 19:43:30
1174
原创 【计算机网络笔记】第六章 数据链路层
本文摘要:数据链路层是网络体系结构中的重要组成部分,主要功能包括帧封装、链路管理、差错控制和流量控制。它通过物理链路实现节点间的可靠数据传输,使用MAC地址进行寻址,并采用CSMA/CD等协议解决共享信道的冲突问题。文章详细介绍了数据链路层的服务、差错控制机制(如CRC校验)、介质访问控制方法(包括信道划分和随机访问协议),以及局域网技术(以太网、交换机、VLAN等)。特别阐述了ARP协议实现IP与MAC地址映射的原理,交换机的自学习机制,以及VLAN划分广播域的方法。这些技术共同构成了现代网络通信的基础。
2025-11-16 20:16:12
1090
原创 【编译原理笔记】4.4 Top-Down Parsing
本文系统阐述了语法分析中的关键技术与算法,主要包括三个核心部分:首先详细讲解了如何编写符合要求的文法,包括消除二义性(如悬空else问题)、算术表达式优先级处理、消除左递归和提取左公因子的方法;其次深入解析了LL(1)分析表的构建过程,包括FIRST集和FOLLOW集的计算方法,以及如何通过这些集合构造预测分析表;最后介绍了语法分析中的错误恢复策略,包括恐慌模式和短语级恢复两种技术。文章通过多个具体示例(如if语句文法、算术表达式文法等)详细演示了各种算法的应用过程,并提供了伪代码实现。
2025-11-11 21:20:48
769
原创 【马尔可夫链】从入门到精通:生活化例子 + 实战例题,彻底搞懂!
本文通过大学生自习状态的实例,阐述了马尔可夫链的基本原理和应用。案例以专注、一般、分心三种状态构建转移概率矩阵,通过Python模拟展示了状态分布如何收敛于平稳分布(44%专注、38%一般、17%分心)。文章详细介绍了马尔可夫链的定义、性质(不可约性、周期性、常返性)及平稳分布的求解方法。最后探讨了马尔可夫链在机器学习(HMM、MCMC、强化学习)和深度学习(RNN、GAN)中的核心应用,强调其"无后效性"在简化序列建模中的关键作用。案例与理论结合,生动展示了马尔可夫链的实用价值。
2025-11-08 21:29:06
887
原创 【编译原理笔记】4.3 A Short Introduction of Parsing
本文系统介绍了语法分析的基本概念和方法。语法分析的核心是判断输入字符串是否符合文法规则并构建语法结构,主要分为自顶向下(如递归下降、LL分析)和自底向上(如LR分析)两类方法。通过示例文法S→xAy,A→**|和输入xy,详细对比了两种分析过程。自顶向下分析采用下推自动机模型,通过推导、匹配和回溯规则逐步构建语法树;自底向上则通过移进-归约操作完成分析。文章还重点讨论了语法分析中的六大核心挑战:二义性、左递归、回溯、左公因子、ε产生式和非上下文无关结构问题,并分析了它们的解决方案。这些问题的处理直接影响编译
2025-11-02 16:37:16
924
原创 【编译原理笔记】4.2 Context-free Grammar
摘要:上下文无关文法(CFG)是描述编程语言语法的关键形式化工具,由终结符号、非终结符号、产生式和开始符号四个核心要素组成。本文详细介绍了CFG的定义、推导过程(最左/最右推导)、语法分析树表示以及二义性问题,并通过算术表达式文法示例展示了实际应用。特别比较了CFG与正则表达式在表达能力上的差异,指出CFG能描述更复杂的嵌套结构。最后给出典型语言(如aⁿbⁿ)的文法构造示例,帮助理解CFG的基本原理与应用。
2025-11-02 16:32:51
917
原创 【编译原理笔记】4.1The Role of Syntax Analyzer
本文系统阐述了编译器语法分析器的核心功能与方法。首先明确了语法分析器在编译器中的位置,其接收词法分析器的记号流并生成语法树。主要任务包括语法验证、错误消息生成(精确定位错误并给出修复建议)、错误恢复(避免级联错误)和语法分析(构建语法树)。介绍了三种分析方法:通用方法(低效)、自顶向下(如递归下降)和自底向上(如LR算法),并通过赋值语句示例演示了语法树构建过程。最后详细分析了词法、语法、语义和逻辑四类错误,并提出了恐慌模式、短语级恢复等错误处理策略。语法分析器通过构建语法树为后续编译阶段提供了结构基础。
2025-11-02 16:30:46
804
原创 【数据库原理笔记】2 结构查询语言——sql语句详解与示例
本文通过SQL语句与关系代数的对比,系统讲解了SQL语言的核心操作。主要内容包括:数据定义语言(DDL)的表创建与修改;基本查询结构(投影、选择、去重);连接查询(等值、自然连接);字符串操作;排序和集合操作;聚合函数与分组;空值处理;嵌套子查询;视图操作;数据库修改语句(增删改);以及内外连接等。文中特别强调SQL与关系代数的对应关系,指出SQL具有重复语义而关系代数是基于集合的,同时展示了SQL特有的功能(如LIKE模式匹配)在关系代数中无直接对应的操作。
2025-10-28 15:23:14
689
原创 【编译原理笔记】3.4 Tokens Recognization
本文系统介绍了有限状态自动机及其等价转换。主要内容包括:1)非确定性有限自动机(NFA)和确定性有限自动机(DFA)的定义与组成;2)通过Thompson算法实现正则表达式到NFA的转换;3)利用ε-闭包和子集构造算法将NFA转换为DFA;4)采用状态划分法最小化DFA。关键定理表明,正则表达式、NFA和DFA在描述正则语言方面具有等价性,且最小DFA在状态重命名意义下唯一。
2025-10-27 21:33:54
841
原创 【编译原理笔记】3.3 Specification of Tokens
正则定义是一系列定义序列:d₁ → r₁d₂ → r₂...dₙ → rₙ约束条件每个dᵢ是新的符号,不在基本字母表Σ中每个rᵢ是Σ ∪ {d₁, d₂, ..., dᵢ₋₁}上的正则表达式。
2025-10-27 20:57:27
383
原创 【编译原理笔记】3.2 Input Buffering
只要词素长度加上向前查看距离不超过N,就永远不会在确定词素前覆盖缓冲区。- 记录lexemeBegin到forward之间的词素。[正常字符...][eof哨兵] [正常字符...][eof哨兵]- lexemeBegin移动到forward位置。在每个缓冲区末尾添加特殊字符(哨兵),将两个测试合并为一个。[缓冲区1: N字节] [缓冲区2: N字节]- forward移动到新缓冲区开始。1. forward向前移动,检查字符。:大多数标记很短,1-2字符向前查看足够。- 返回标记给解析器。
2025-10-27 14:40:49
296
原创 【编译原理笔记】3.1 The Role of the Lexical Analyzer
《编译原理:词法分析器核心功能与设计要点》摘要: 词法分析器作为编译器的首阶段,主要完成字符读取、词素分组、标记生成和符号表管理四大功能。其核心将字符流转换为token流,每个token包含名称和属性值二元组。设计上采用扫描与解析分离策略,既简化解析器复杂度,又提升编译器效率和可移植性。标记(token)、模式(pattern)和词素(lexeme)构成三元关系,属性值则提供关键语义信息。词法错误处理受限于局部视角,常采用增删替换等修补策略,复杂错误需移交后续阶段处理。
2025-10-27 14:29:33
516
原创 【计算机网络笔记】第二章 应用层 (Application Layer)
本文系统介绍了计算机网络应用层的核心概念与技术。主要内容包括: 网络应用架构:详细分析了客户-服务器(C/S)、对等(P2P)和混合架构的特点及应用场景。 进程通信机制:阐述了套接字接口(Socket)的工作原理,以及进程寻址方法。 传输层服务:比较了TCP和UDP协议的特性及适用场景。 典型应用协议:深入解析了HTTP、SMTP、DNS等协议的工作机制和核心功能。 新兴技术:介绍了P2P应用、视频流媒体和CDN等现代网络技术。
2025-10-24 21:28:13
697
原创 【计算机网络笔记】第一章 计算机网络导论
本文系统介绍了计算机网络的基本概念与技术。首先阐述了因特网的定义,包括其物理构成、服务模式和协议体系。随后详细解析了网络边缘的端系统、接入网技术和物理媒介,以及网络核心的分组交换与电路交换原理。文章还深入探讨了网络性能指标如时延、吞吐量、丢包率等,并分析了信号传输过程中的失真问题与信道容量限制。最后,通过对比OSI七层模型与TCP/IP四层模型,揭示了计算机网络的分层架构思想。全文从多维度构建了对计算机网络的全面理解,为后续网络技术学习奠定了基础。
2025-10-22 22:14:01
1076
3
原创 【数据库原理笔记】1 关系模型,关系代数——超详细+具体例题
关系模式是关系的型(Type)关系名:表的唯一标识(如STUDENT属性集:表的列及其数据类型(如学号 CHAR(7)完整性约束:主键、外键、域约束等。形式化表示U属性集合(如D:属性对应的域(如SNO的域是7位数字)。DOM:属性到域的映射(如F:属性间的函数依赖(如PK:主键(如SNO键类型定义示例(STUDENT表)特点超键能唯一标识行的属性组合(含冗余){SNO}{ID}不要求最小性候选键最小的超键(无冗余属性){SNO}{ID}表中可能有多个候选键主键从候选键中选定的唯一标识符SNO。
2025-10-21 11:28:43
830
原创 【编译原理笔记】2.2 Programming Language Design
形式语言与文法理论摘要 形式语言理论主要研究由字母表生成的字符串集合及其结构规则。语言由特定语法规则约束,文法作为形式化描述工具,通过产生式定义语言结构。文法分为四个关键组件:终结符、非终结符、产生式和开始符号,能够通过推导过程生成语言中的句子。 乔姆斯基将文法划分为四个层次:0型(无限制)、1型(上下文相关)、2型(上下文无关)和3型(正则文法),分别对应不同的计算能力和自动机模型。文法设计可采用逐步分解、电路图、两边等价等多种方法,处理不同特性的语言。
2025-10-15 19:55:01
293
原创 【编译原理笔记】2.1 Programming Language Basics
本文系统介绍了编程语言中的核心概念:1. 静态与动态特性区分编译时处理(如作用域、类型检查)和运行时处理(如变量分配、多态);2. 环境与状态模型将名字映射分为静态的环境映射和动态的状态映射;3. 作用域规则对比静态作用域(基于程序结构)和动态作用域(基于调用序列);4. 参数传递机制详述传值、传引用和传名调用的特点及使用场景;5. 别名问题分析多名称引用同一内存的风险及解决方案。这些概念构成理解语言设计、编译器实现和程序正确性的理论基础,反映了从动态到静态、从隐式到显式的语言演进趋势。
2025-10-14 22:31:56
581
原创 【循环神经网络6】LSTM实战——基于LSTM的IMDb电影评论情感分析
本项目基于PyTorch框架构建了一个双向LSTM模型,用于IMDb电影评论的二分类情感分析(正面/负面)。模型采用2层LSTM结构,使用BCEWithLogitsLoss作为损失函数,在50,000条评论数据集上训练后达到74.44%的测试准确率。项目包含完整的数据预处理流程(文本清洗、词汇表构建)、模型实现(嵌入层+LSTM+全连接层)以及训练评估模块。分析发现模型存在明显过拟合现象(训练准确率94.34% vs 测试74.44%),表明当前模型记忆了训练数据特征但泛化能力不足。
2025-10-05 21:52:14
1146
原创 【循环神经网络5】GRU模型实战,从零开始构建文本生成器
本项目构建了一个基于GRU的字符级语言模型,用于生成莎士比亚风格的文本。采用PyTorch框架实现,包含数据处理、模型训练和文本生成三个主要模块。模型结构包括嵌入层(256维)、两层GRU(隐藏层512维)和全连接输出层,使用交叉熵损失和Adam优化器进行训练。实验结果显示,模型能生成拼写正确、语法基本通顺且带有莎士比亚戏剧风格的文本,但存在语义不连贯的问题。项目还深入剖析了GRU的数学原理与PyTorch实现的关系,通过手动实现GRUCell验证了与官方实现的一致性。
2025-10-03 10:44:56
1701
原创 【编译原理笔记】1.2 The Structure of Compiler
《编译器结构》一文系统阐述了编译器从源代码到目标代码的转换过程。核心框架包含分析阶段(词法、语法、语义分析)和综合阶段(中间代码生成、优化、目标代码生成)。分析阶段将源代码分解为语法语义单元并生成中间表示;综合阶段则转换为目标代码。各子阶段详解包括:词法分析(字符流→Token)、语法分析(Token→语法树)、语义分析(类型/作用域检查)、中间代码生成、优化及目标代码生成(指令选择/寄存器分配)。文章强调编译器各阶段的协作关系,为后续章节深入探讨各环节技术奠定基础。
2025-09-30 12:30:30
1255
原创 【循环神经网络4】双向循环神经网络Bi-RNN & 深度循环神经网络Deep RNN
本文介绍了循环神经网络(RNN)的进阶结构,包括双向循环神经网络(Bi-RNN)和深度循环神经网络(DeepRNN)。Bi-RNN通过同时处理序列的前向和反向信息,有效解决了传统RNN无法捕捉上下文依赖的问题,特别适用于自然语言处理和语音识别等任务。文章还说明了Bi-RNN可以与LSTM、GRU等结构结合使用,进一步提升性能。DeepRNN则在单隐藏层RNN基础上堆叠多个隐藏层,增强了模型表达能力。这些结构展示了RNN在序列数据处理中的强大能力和灵活性。
2025-09-29 11:39:43
671
原创 【循环神经网络3】门控循环单元GRU详解
GRU(门控循环单元)是通过简化LSTM结构提出的循环神经网络变体,于2014年提出。其核心包含重置门和更新门两个门控机制,分别控制短期记忆和长期记忆的保留程度。GRU通过候选隐状态的计算和门控融合实现信息流动,相比LSTM减少了参数数量(6组参数vs.LSTM的8组)和计算复杂度,同时保持相近的长期依赖处理能力。结构上GRU仅维护一个隐藏状态,而LSTM需要额外维护细胞状态。实际应用中,GRU在计算效率上更具优势,特别适合资源受限场景,而LSTM可能在复杂序列建模任务中表现更优。两者选择需权衡任务需求和计
2025-09-28 15:11:24
1035
原创 【循环神经网络2】长短期记忆网络LSTM详解
LSTM(长短期记忆网络)通过引入单元状态和门控机制解决了传统RNN的梯度消失问题。其核心结构包括遗忘门、输入门和输出门,分别控制长期记忆的保留、当前输入的存储和最终输出。前向传播中使用sigmoid和tanh激活函数计算门控状态和单元状态。反向传播时,误差项通过时间反向传播(BPTT)和权重梯度计算实现参数更新。数学推导表明,LSTM能够有效捕捉长距离依赖关系,适用于序列建模任务。该网络通过门控机制智能管理信息流,显著提升了处理长期依赖的能力。
2025-09-27 13:28:00
1316
原创 【论文精读】2022_ICLR_PICO: CONTRASTIVE LABEL DISAMBIGUATION FOR PARTIAL LABEL LEARNING——架构详解与公式推导
本文详解了2022ICLR的bestPaper论文PiCO。该论文提出了一种新型部分标签学习(PLL)框架PiCO,通过结合对比学习和原型标签消歧来提升模型性能。PiCO包含两个关键模块:对比学习模块利用分类器预测构建正样本对,通过对比损失优化特征表示;原型标签消歧模块基于类特征中心迭代更新伪标签分布。理论分析表明,这两个模块在期望最大化(EM)框架下相互促进:对比学习对应M步(最大化似然),标签消歧对应E步(估计后验概率)。该工作首次将对比学习引入PLL领域,并通过理论分析验证了其有效性。
2025-09-26 20:38:21
472
原创 【循环神经网络1】一文搞定RNN入门与详解
摘要:RNN(循环神经网络)是为处理序列数据而设计的,能够捕捉前后输入间的关联性(如自然语言处理中的词性标注)。其核心结构通过隐藏层状态传递历史信息,采用BPTT算法进行训练。RNN优点包括参数共享和处理变长序列,但存在梯度消失/爆炸问题。改进方法包括使用LSTM/GRU结构、调整激活函数等。RNN广泛应用于语音识别、机器翻译等时序任务中,成为处理序列问题的关键深度学习模型。(149字)
2025-09-25 11:15:39
2172
原创 【编译原理笔记】1.1 Language Processors
本文系统介绍了编程语言处理器的核心概念与实现技术。主要内容包括:1. 编译器技术:详细解析了编译器的多阶段处理流程(词法分析、语法分析、语义分析等)及其代码优化功能,说明其如何实现高级语言到机器码的翻译;2. 解释器原理:对比编译器,阐述解释器逐行执行的特性及其在开发效率与跨平台方面的优势;3. 混合处理器:分析结合编译与解释的混合方案(如JVM)如何平衡性能与灵活性;4. 语言处理系统:完整描述从预处理器到链接器的工具链协作关系。
2025-09-22 20:42:38
790
原创 【卷积神经网络详解与实例】10——经典CNN之GoogLeNet
GoogLeNet(Inception v1)是Google团队2014年提出的深度卷积神经网络,在ImageNet竞赛中取得突破性成绩。其核心创新包括:1)Inception模块,并行使用不同尺寸卷积核增强特征表达能力;2)1×1卷积降维减少计算量;3)全局平均池化替代全连接层降低参数量;4)辅助分类器缓解梯度消失问题。网络结构由9个Inception模块堆叠而成,参数量仅6.8M,显著低于同期模型。文章还提供了基于PyTorch的完整实现代码,包括模型定义、数据预处理、训练和测试流程。
2025-09-17 21:35:49
1076
原创 【卷积神经网络详解与实例】9——经典CNN之NiN(网络中的网络)
摘要:NiN(Network in Network)是2014年提出的一种创新卷积神经网络结构,旨在解决传统CNN的局限性。其核心创新包括:1)MLP卷积层,通过1x1卷积增强局部特征提取能力;2)全局平均池化替代全连接层,大幅减少参数量。相比AlexNet等传统网络,NiN在保持高表达能力的同时显著提升了参数效率。PyTorch实现显示,该结构在CIFAR-10等任务上表现优异,证明了其设计的前瞻性。NiN的思想对后续GoogLeNet等网络架构产生了深远影响。(149字)
2025-09-15 11:13:07
635
原创 【卷积神经网络详解与实例】8——经典CNN之VGG
VGGNet是牛津大学提出的深度卷积神经网络,在2014年ImageNet竞赛中取得优异成绩。其核心创新在于系统探索网络深度对性能的影响,采用连续堆叠3×3小卷积核替代大卷积核,显著提升特征提取能力。VGG16包含13个卷积层和3个全连接层,总参数量约1.38亿,其中90%集中在全连接层。主要优点包括:简洁统一的设计、深度网络的性能验证、强大的特征提取能力;缺点是参数量大、计算成本高、全连接层冗余。实验表明,增加网络深度能持续提升模型精度,但需配合批归一化和Dropout缓解过拟合。
2025-09-14 20:03:28
1156
原创 【卷积神经网络详解与实例】7——经典CNN之AlexNet
AlexNet是2012年提出的里程碑式卷积神经网络,在ImageNet竞赛中以15.3%的错误率远超传统方法。其创新包括:使用ReLU激活函数缓解梯度消失;采用Dropout和数据增强防止过拟合;首次利用GPU加速训练。该网络包含5个卷积层和3个全连接层,通过重叠池化提升特征不变性。实验表明,在Fashion-MNIST和CIFAR-10数据集上,带动量优化的SGD表现最佳,测试准确率分别达91.78%和83.63%。AlexNet的成功标志着深度学习时代的开启,推动了计算机视觉领域的范式转变。
2025-09-13 20:43:44
1124
原创 【卷积神经网络详解与实例】6——经典CNN之LeNet
LeNet是卷积神经网络的开创性工作,由Yann LeCun提出用于手写数字识别。其经典架构LeNet-5包含6层网络:2个卷积层(C1、C3)和2个池化层(S2、S4)交替排列,后接全连接层(F6)和输出层。该网络首次采用卷积核参数共享和降采样策略,显著提升了特征提取效率。实验部分基于PyTorch实现LeNet-5在MNIST数据集上的训练并对比了SGD和Adam优化器的性能。文章还详细分析了原始池化层与现代实现的关键差异,指出早期版本包含可训练参数而现代实现多采用无参数池化操作。
2025-09-12 19:33:06
1055
原创 【卷积神经网络详解与实例】5——入门CNN
卷积神经网络(CNN)是一种专为处理网格结构数据(如图像)设计的深度学习模型,其核心优势在于局部连接、权值共享和池化操作。相比全连接网络,CNN通过局部感受野提取层次化特征,显著减少参数数量并保持空间信息。关键组件包括卷积层(特征提取)、ReLU激活函数(引入非线性)、池化层(信息压缩)和全连接层(分类)。CNN的发展始于1998年LeNet-5的提出,2012年AlexNet在ImageNet竞赛中取得突破性成果。该模型有效解决了图像平移、缩放等变形问题,成为计算机视觉领域的重要基础架构。
2025-09-11 11:15:01
1375
原创 【卷积神经网络详解与实例】4——感受野
摘要:感受野是卷积神经网络中描述神经元对输入图像感知范围的重要概念,其大小反映了特征的抽象层次。感受野的计算涉及卷积核尺寸和步长等参数,可通过公式推导得到。影响感受野的操作包括普通卷积、空洞卷积、池化等,而1×1卷积、激活函数等操作不改变感受野。在多分支结构中,最终感受野取各分支最大值。理解感受野有助于分析网络各层的特征提取能力。(149字)
2025-09-10 19:09:19
1575
原创 【卷积神经网络详解与实例】3——池化与反池化操作
摘要:本文介绍了CNN中的池化与反池化操作。池化主要用于降维,包括最大池化(保留纹理特征)、平均池化(突出背景信息)和随机池化(平衡特征提取与过拟合)。重叠池化与卷积类似但运算方式不同。反池化包括反最大池化(需记录最大值位置)和反平均池化。池化层无需训练参数,能有效减少计算量。
2025-09-09 19:46:00
566
原创 【论文精读】2020_ICML_Progressive Identification of True Labels for Partial-Label Learning(PRODEN)
本文提出了一种渐进式识别真实标签的方法(PRODEN)用于偏标签学习(PLL)。在PLL问题中,每个训练样本配有一组候选标签,其中仅一个为真实标签。现有方法通常采用复杂的约束优化,难以扩展到大数据场景。本文的创新点包括:1)提出基于最小损失的风险估计器,保证分类器一致性;2)设计渐进式识别算法,动态更新模型和标签权重;3)理论证明估计误差边界。该方法通过将硬性最小化操作转化为动态加权过程,实现模型训练与标签识别的协同优化,具有模型无关、损失函数无关、兼容随机优化等优势,显著提升PLL在大规模数据上的适用性。
2025-08-31 21:14:23
1365
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅