Dividing The Plane 直线划分平面

A line dividesthe plane into two pieces (regions). Draw another line. The plane is nowdivided into three or four regions. It is three regions if the lines areparallel, four if they intersect. For the purposes of this article, we want thegreatest number of regions. So, two lines, four regions. A third line dividesthe plane into seven regions (See the diagram). The results, so far:
linesregions
12
24
37

Using a little algebra, we can find an equation for the first three lines:

R(n) = an² + bn + c
2 =  a +  b + c
4 = 4a + 2b + c
7 = 9a + 3b + c
...
R(n) = (n²+n+2)/2

We see, from the diagram, that four lines produces eleven regions. So wesee that our formula works for four lines. And we suspect that it is valid ingeneral. How do we prove that?

Let's say that we've got n lines (for some arbitrary n). Andwe add an n+1th line. That line goes throughregion-line-region-line-...-line-region. It went through n lines andn+1 regions (assuming that all of the lines intersect). For each regionthat it went through, it added a region (split that region into two regions).So it added n+1 regions. So, we've just proved the rule: R(n+1)=R(n)+ n + 1.

Our earlier formula, which works for some n, is:

R(n) = (n²+n+2)/2

What is R(n+1), by that formula?

R(n+1) = [(n+1)² + (n+1) + 2]/2
       = (n²+3n+4)/2
       = (n²+n+2)/2 + n + 1

In other words:

R(n+1) = R(n) + n + 1

So, our formula follows the rule R(n+1)=R(n) + n + 1. This meansthat we have actually proved our formula, by Mathematical Induction. Ourformula works for the first case (n=1). And we showed that if theformula works for some n, then it works for n+1.

By using Mathematical Induction, we have shown that if our formula worksfor n=1 (which it does), then it works for n=2. And if it worksfor n=2, then it works for n=3. And if it works for n=3,then it works for n=4, etc. In other words, it works for all, infinitelymany cases, from 1 on up.


Our formula, R(n)=(n²+n+2)/2 is an integer divided by 2. Doesit always give us an integer for R(n)? It should, because we never endup with a fraction of a region. Well, if n is even, then is even and n²+n+2 is even, we get an integer when we divide by 2.If n is odd, then is odd and n²+n+2 is even,we get an integer when we divide by 2.

Incidentally, our formula works for n=0. With no lines, we find thatthe plane is divided into one region. In our proof, we could have saved alittle effort, by using n=0 as the first case.

Notice: 100 lines divide the plane into 5051 regions. See my article,How To Be A Little Gauss, for an amazing"coincidence." Also notice that 1000 lines divide the plane into500501 regions. This article was actually the inspiration for that article.

© Copyright 1997, Jim Loy http://www.jimloy.com/geometry/plane.htm
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值