
【论文阅读】skill code 和 one-shot manipulate
自然语言,作为人类获取新知识的首要媒介,为将人类理解的概念转化为机器可学习格式提供了潜在的直观桥梁。在顶层,模型的任务是学习离散的技能代码;而在底层,策略网络将问题转化为体素化网格,并将离散化的动作映射到体素网格上。我们提出了一种名为不变匹配一次性策略学习(Invariance-Matching One-shot Policy Learning, IMOP)的算法。
笔记记录
具身智能-Grasp
Scene Graph Generation
时空动作定位
Video Understanding
Temporal Action Detection
Temporal Action Localization
Transfromer
深度学习入门——Pytorch框架
目标检测
多目标追踪(MOT)
数据集操作
DL经典网络复现
DL经典论文阅读
STM32CubeMx
控制系统数字仿真
机器学习
数学建模
Python基础语法
pyplot绘图教程 
