find the most comfortable road

Problem Description
XX星有许多城市,城市之间通过一种奇怪的高速公路SARS(Super Air Roam Structure---超级空中漫游结构)进行交流,每条SARS都对行驶在上面的Flycar限制了固定的Speed,同时XX星人对 Flycar的“舒适度”有特殊要求,即乘坐过程中最高速度与最低速度的差越小乘坐越舒服 ,(理解为SARS的限速要求,flycar必须瞬间提速/降速,痛苦呀 ),
但XX星人对时间却没那么多要求。要你找出一条城市间的最舒适的路径。(SARS是双向的)。
 

Input
输入包括多个测试实例,每个实例包括:
第一行有2个正整数n (1<n<=200)和m (m<=1000),表示有N个城市和M条SARS。
接下来的行是三个正整数StartCity,EndCity,speed,表示从表面上看StartCity到EndCity,限速为speedSARS。speed<=1000000
然后是一个正整数Q(Q<11),表示寻路的个数。
接下来Q行每行有2个正整数Start,End, 表示寻路的起终点。
 

Output
每个寻路要求打印一行,仅输出一个非负整数表示最佳路线的舒适度最高速与最低速的差。如果起点和终点不能到达,那么输出-1。
 

Sample Input
4 4
1 2 2
2 3 4
1 4 1
3 4 2
2
1 3
1 2
 

Sample Output
1
0
 

Author
ailyanlu
 

Source
HDU 2007-Spring Programming Contest - Warm Up (1)
 







用并查集找出所有的相通的路径,取最小值


#include<iostream>
#include<algorithm>
using namespace std;
int N,M;
#define Min(a,b) a<b?a:b
typedef struct node{


   int s;
   int d;
   int speed;


}Node;
bool compare(Node a,Node b)
{
   return a.speed<b.speed;


}
Node nodes[1007];
int parent[300];
void init(int n)
{
for(int i=1;i<=n;i++)
{

   parent[i]=-1;
}
  


}
int find(int i)
{


    while(parent[i]>0)
{
   i=parent[i];
}
return i;
}
void combine(int a,int b)
{


   parent[a]=b;
}




int main()
{
  //freopen("in.txt","r",stdin);
   while(scanf("%d%d",&N,&M)!=EOF)
   {
      int a,b,s;
 for(int i=0;i<M;i++)
{
cin>>a>>b>>s;
  
nodes[i].s=a;
nodes[i].d=b;
   nodes[i].speed=s;


}
 sort(nodes,nodes+M,compare);
int count;
cin>>count;
for(int k=0;k<count;k++)
{

int min=1000000;
   int a=0,b=0;
cin>>a>>b;
   for(int m=0;m<M;m++)
{
   init(N);
for(int n=m;n<M;n++)
{
   int p1=find(nodes[n].s);
int p2=find(nodes[n].d);
if(p1!=p2)combine(p1,p2);
if(find(a)==find(b))
{
  
 min=Min(min,nodes[n].speed-nodes[m].speed);
 break;
}

}
}
if(min!=1000000)
{
 cout<<min<<endl;
}
else{

cout<<"-1"<<endl;
}
}


   }
   return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值