RP问题
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1204 Accepted Submission(s): 471
Problem Description
在人类社会中,任何个体都具有人品,人品有各种不同的形式,可以从一种形式转换为另一种形式,从一个个体传递给另一个个体,在转换和传递的过程中,人品不会消失,也不被能创造,这就是,人品守恒定律!
人品守恒定律更形象的描述,当发生一件好事,你从中获利,必定消耗一定量RP;当发生一件不幸的事,你在其中有所损失,必定积攒一定量RP。
假设在一个时间段内在你身上可能会发生N个事件,每个事件都对应一个RP变化值a、RP门槛值b和获益值c。当RP变化值a为正,获益值c必定为负,只有你当前的RP值小于等于RP门槛值b的时候,此事件才有可能发生,当此事件发生时,你的RP值将增加|a|,获益值将减少|c|。反之,当RP变化值a为负,获益值c必定为正,只有你当前的RP值大于等于RP门槛值b的时候,此事件才有可能发生,当此事件发生时,你的RP值将减少|a|,获益值将增加|c|。
一个事件在满足上述RP条件的前提下,未必会发生。假设在这段时间之前你所具有的RP值和获益值都为0,那么过了这段时间后,你可能达到的最大获益值是多少?
注意:一个人的所具有的RP值可能为负。
人品守恒定律更形象的描述,当发生一件好事,你从中获利,必定消耗一定量RP;当发生一件不幸的事,你在其中有所损失,必定积攒一定量RP。
假设在一个时间段内在你身上可能会发生N个事件,每个事件都对应一个RP变化值a、RP门槛值b和获益值c。当RP变化值a为正,获益值c必定为负,只有你当前的RP值小于等于RP门槛值b的时候,此事件才有可能发生,当此事件发生时,你的RP值将增加|a|,获益值将减少|c|。反之,当RP变化值a为负,获益值c必定为正,只有你当前的RP值大于等于RP门槛值b的时候,此事件才有可能发生,当此事件发生时,你的RP值将减少|a|,获益值将增加|c|。
一个事件在满足上述RP条件的前提下,未必会发生。假设在这段时间之前你所具有的RP值和获益值都为0,那么过了这段时间后,你可能达到的最大获益值是多少?
注意:一个人的所具有的RP值可能为负。
Input
输入数据的第一行为一个正整数T,表示有T组测试数据。每组测试数据的第一行为一个正整数N (0 < N <= 1000),表示这个时间段在你身上可能发生N个事件。接下来N行,每行有三个整数a, b, c (0 <= |a| <= 10, 0 <= |b| <= 10000, 0 <= |c| <= 10000)。这N个事件是按照输入先后顺序先后发生的。也就是说不可能先发生第i行的事件,然后再发生i – j行的事件。
Output
对应每一组输入,在独立一行中输出一个正整数,表示最大可能获益值。
Sample Input
3 1 -1 0 1 2 10 200 -1 -5 8 3 3 -5 0 4 10 -5 -5 -5 5 10
Sample Output
1 2 9
Author
lwg
Source
Recommend
攒人品很重要。。。
不多说,附注释的代码
#include <iostream> #include <cmath> #include <ctime> #include <algorithm> using namespace std; const int maxn = 20005; const int tmp = 10000; const int inf = 1<<25; int n,a,b,c,dp[maxn]; int main(){ int t,i,j,k; std::ios::sync_with_stdio(false); //提高cin读入效率 cin >> t; while (t--) { for (i=0; i<maxn; i++) dp[i] = -inf; dp[tmp] = 0; cin >> n; for (i=1; i<=n; i++) { cin >> a >> b >> c; if (a>=0) { for (j = b+tmp; j>=0; j--) { //题目讲了rp<=b才会发生,所以逆序扫描 if (dp[j] != inf) { dp[j+a] = max(dp[j+a],dp[j]+c); //状态转移,因为可能不发生 } } } else { for (j=b+tmp; j<maxn; j++) { //a<0,rp>=b才会发生,所以顺序扫描 if (dp[j] != inf) { //已经计算过了的状态 dp[j+a] = max(dp[j+a],dp[j]+c); //状态转移,因为可能不发生 } } } } int maxx=0; for (i=0; i<maxn; i++) maxx= max(maxx,dp[i]); cout << maxx << endl; } return 0; }