HDOJ3790 单源最短路 + 双权值

最短路径问题

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 29132    Accepted Submission(s): 8661


Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
 

Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
 

Output
输出 一行有两个数, 最短距离及其花费。
 

Sample Input
  
  
3 2 1 2 5 6 2 3 4 5 1 3 0 0
 

Sample Output
  
  
9 11
 

Source
 

Recommend
notonlysuccess   |   We have carefully selected several similar problems for you:   1217  1142  1548  1385  1598 

很裸的单源最短路,双权值判断其实就是多出一个条件判断语句而已。。。
数据预处理很重要。。。。

#include <iostream>
#include <cmath>
#include <algorithm>
#include <ctime>
using namespace std;

const int maxn = 1005;
const int inf = 1<<25;
int n,m,d,p,a,b,s,t;
int MAP[maxn][maxn],cost[maxn][maxn];
int dist[maxn],c[maxn];
bool used[maxn];

void dijstra(){
    for (int i=1; i<=n; i++) {
        dist[i] = inf;
        c[i] = inf;
        used[i] = 0;
    }
    dist[s] =0; used[s] = 1 ; c[s] = 0;

    int tmp = s;
    for (int i=1; i<=n; i++) {
       for (int k=1; k<=n; k++) {
           if (dist[k] > dist[tmp] + MAP[tmp][k]) {
                dist[k] = dist[tmp] + MAP[tmp][k];
                c[k] = c[tmp] + cost[tmp][k];
           }
           else if (dist[k] == dist[tmp] + MAP[tmp][k]){
               c[k] = min(c[k], c[tmp] + cost[tmp][k]);
           }
       }

       int mindist = inf;
       for (int k=1; k<=n; k++) {
          if (!used[k] && dist[k] < mindist) {
               mindist = dist[k];
               tmp = k;
          }
       }

       used[tmp] = 1;
    }
}

int main(){
    int i,j,k;
    std::ios::sync_with_stdio(false);
    while (cin >> n >> m && n+m) {
         for (i=1; i<=n; i++) {
            for (j=1; j<=n; j++)
                MAP[i][j] = inf;
                cost[i][j] = inf;
         }
        for (i=1; i<=m; i++) {
              cin >> a >> b >> d >> p;
              if ((MAP[a][b] > d) || (MAP[a][b] == d && cost[a][b] > p)) { //这个判断很重要,没有之前一直WA
                       MAP[b][a] = MAP[a][b] = d;
                       cost[a][b] = cost[b][a] = p;
              }

        }
        cin >> s >> t;
        dijstra();
        cout << dist[t] << " " << c[t] << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值