小希的迷宫
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 54476 Accepted Submission(s): 17103
Problem Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。

Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出"Yes",否则输出"No"。
Sample Input
6 8 5 3 5 2 6 4 5 6 0 0 8 1 7 3 6 2 8 9 7 5 7 4 7 8 7 6 0 0 3 8 6 8 6 4 5 3 5 6 5 2 0 0 -1 -1
Sample Output
Yes Yes No
Author
Gardon
Source
Recommend
思路很容易,判断输入进来的两个点是否已经有公共祖先了。
有的话输出no,没有的话最后要再判断一次是否所有的点有一个公共祖先。
#include <iostream>
#include <ctime>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 1e5+10;
int n,i,j,k,x,y,tot,MAX,MIN;
int root[maxn],f[maxn];
bool flag,t[maxn];
int Find(int a){
int r = a;
while (r!=root[r]) r = root[r];
int i = a,k;
while (root[i]!=r) {
k = root[i];
root[i] = r;
i = k;
}
return r;
}
bool join(int a, int b){
int fa = Find(a), fb = Find(b);
if (fa != fb) {
root[fa] = fb;
return 1;
}
return 0;
}
void init(){
flag = 1;
for (i=1; i<maxn; i++) root[i] = i;
memset(t,0,sizeof(t));
}
int main(){
std::ios::sync_with_stdio(false);
while (1) {
cin >> x >> y;
if (x==-1 && y==-1) break;
if (x==0 && y==0) { //这个很重要,这里WA了好几次
cout << "Yes" << endl;
continue;
}
init();
MIN = min(x,y); MAX=max(x,y);
t[x] = t[y] = 1; //标记x,y出现过
while (1) {
if (!join(x,y)) flag = 0;
cin >> x >> y;
if (x==0 && y==0) break;
if (!flag) continue;
MIN = min (MIN,x); MAX = max (MAX,x);
MIN = min (MIN,y); MAX = max (MAX,y);
t[x] = t[y] = 1;
}
if (flag) {
tot = 0;
memset(f,0,sizeof(f));
for (i=MIN; i<=MAX; i++) f[Find(i)] = 1;
for (i=MIN; i<=MAX; i++) if (f[i] && t[i]) tot++;
if (tot > 1) flag = 0;
}
if (flag) cout << "Yes" << endl;
else cout << "No" << endl;
}
return 0;
}