基础知识
栈
- 栈提供push 和 pop 等等接口,所有元素必须符合先进后出规则,所以栈不提供走访功能,也不提供迭代器(iterator)。STL中栈往往不被归类为容器,而被归类为container adapter(容器适配器)。
- 栈的底层实现可以是vector,deque,list , 主要就是数组和链表的底层实现。
std::stack<int, std::vector<int> > third; // 使用vector为底层容器的栈
队列
队列是先进先出的数据结构,同样不允许有遍历行为,不提供迭代器,也可以指定list 为起底层实现
std::queue<int, std::list<int>> third; // 定义以list为底层容器的队列
队列也不被归类为容器,而被归类为container adapter( 容器适配器)。
例题
用两个栈,一个输入栈,一个输出栈,入队时压入输入栈,出队时如果输出栈不为空,则弹出输出栈栈顶元素;如果输出栈为空,将输入栈全部压入输出栈,然后弹出输出栈栈顶元素。
如果输入栈输出栈都为空,则队列为空
class MyQueue {
public:
stack<int> stin;
stack<int> stout;
MyQueue() {
}
void push(int x) {
stin.push(x);
}
int pop() {
int re;
if(stout.empty()){
while(!stin.empty()){
re=stin.top();
stin.pop();
stout.push(re);
}
}
re=stout.top();
stout.pop();
return re;
}
int peek() {
int re;
if(stout.empty()){
while(!stin.empty()){
re=stin.top();
stin.pop();
stout.push(re);
}
}
re=stout.top();
return re;
}
bool empty() {
if(stin.empty() && stout.empty()){
return true;
}
return false;
}
};
/**
* Your MyQueue object will be instantiated and called as such:
* MyQueue* obj = new MyQueue();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->peek();
* bool param_4 = obj->empty();
*/
解1用两个队列,入栈时,只对q1入队。出栈时,将除尾元素的其余元素依次进入另一个队列,此时尾元素在队首,然后将另一个队列的元素依次入队。
返回栈顶元素,直接返回q1的队尾元素即可。
class MyStack {
public:
queue<int> q1;
queue<int> q2;
MyStack() {
}
void push(int x) {
q1.push(x);
}
int pop() {
int size=q1.size();
for(int i=0;i<size-1;i++){//弹出q1
q2.push(q1.front());
q1.pop();
}
for(int i=0;i<size-1;i++){
q1.push(q2.front());
q2.pop();
}
int x=q1.front();
q1.pop();
return x;
}
int top() {
int x=q1.back();
return x;
}
bool empty() {
if(q1.empty()){
return true;
}
else{
return false;
}
}
};
/**
* Your MyStack object will be instantiated and called as such:
* MyStack* obj = new MyStack();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->top();
* bool param_4 = obj->empty();
*/
解2 用一个队列 出栈时将除队尾元素的其他元素重新依次入队,此时队尾元素就是栈顶元素。
class MyStack {
public:
queue<int> q;
MyStack() {
}
void push(int x) {
q.push(x);
}
int pop() {
int size=q.size();
int x;
for(int i=0;i<size-1;i++){
x=q.front();
q.pop();
q.push(x);
}
x=q.front();//此时队首元素就是栈顶元素
q.pop();
return x;
}
int top() {
int x=q.back();
return x;
}
bool empty() {
if(q.empty()){
return true;
}
return false;
}
};
/**
* Your MyStack object will be instantiated and called as such:
* MyStack* obj = new MyStack();
* obj->push(x);
* int param_2 = obj->pop();
* int param_3 = obj->top();
* bool param_4 = obj->empty();
*/
最先出现的括号最后配对,可以用栈来实现
当遇到括号的左边就入栈,遇到括号的右边就出栈,如果栈非空且栈顶元素与该元素配对就继续比较,否则返回false。
如果最后栈的元素为0,说明所有的括号已经完成配对,返回true。
class Solution {
public:
bool isValid(string s) {
stack<char> st;
for(int i=0;i<s.size();i++){
if(s[i]=='(' || s[i]=='[' || s[i]=='{'){
st.push(s[i]);
}
else{
if(!st.empty() && s[i]==')' && st.top()=='('){//!st.empty()是避免出现")"这种情况
st.pop();
}
else if(!st.empty() && s[i]==']' && st.top()=='['){
st.pop();
}
else if(!st.empty() && s[i]=='}' && st.top()=='{'){
st.pop();
}
else{
return false;
}
}
}
if(st.size()==0){
return true;
}
return false;
}
};
解1 相邻重复项可以想到栈的特性
如果栈为空或者栈顶元素与当前元素不一样就入栈,否则出栈,最后就是目标字符串的倒序。
class Solution {
public:
string removeDuplicates(string s) {
stack<int> q;
string re;
for(int i=0;i<s.size();i++){
if(q.empty()){
q.push(s[i]);
}
else if(!q.empty() && s[i]==q.top()){
q.pop();
}
else {
q.push(s[i]);
}
}
while(!q.empty()){
re+=q.top();
q.pop();
}
reverse(re.begin(),re.end());
return re;
}
};
解2 字符串本身就是栈,pop_back()相当于出栈,push_back()相当于入栈,back()返回栈顶元素。
class Solution {
public:
string removeDuplicates(string s) {
string re;
for(char a:s){
if(re.empty() || re.back()!=a){
re.push_back(a);
}
else{
re.pop_back();
}
}
return re;
}
};
解3 删除操作自然也要想到双指针
直接在原来字符串上操作,所以节省了空间
如果s[l]==s[l-1]
,l--
,否则l++
class Solution {
public:
string removeDuplicates(string s) {
int l=0;
int r=0;
for(;r<s.size();r++){
s[l]=s[r];
if(l>0 && s[l]==s[l-1]){
l--;
}
else{
l++;
}
}
s.resize(l);
return s;
}
};
分析:逆波兰表达式就是依照栈创建的,所以直接用一个栈解决
如果当前栈为空或者当前字符串不为运算符就压栈(为方便运算这里建一个int的栈,所以需要类型转换,stoi():sring转int),如果当前字符串是运算符就连续出栈两次,作为右操作数和左操作数,将运算结果在压入栈。最终返回栈顶元素即为最终结果。
class Solution {
public:
int evalRPN(vector<string>& tokens) {
stack<int> st;
for(int i=0;i<tokens.size();i++){
if(st.empty() || (tokens[i]!="+" && tokens[i]!="-" && tokens[i]!="*" && tokens[i]!="/")){//当前字符串为数字
st.push(stoi(tokens[i]));
}
else{
int r=st.top();
st.pop();
int l=st.top();
st.pop();
int re;
if(tokens[i]=="+"){
re=l+r;
}
else if(tokens[i]=="-"){
re=l-r;
}
else if(tokens[i]=="*"){
re=l*r;
}
else{
re=l/r;
}
st.push(re);
}
}
return st.top();
}
};
本题思路很明确,就是找窗口的最大值,关键是怎么找这个最大值,如果硬解的话会超时,这就得想一个奇妙的方法来维持窗口的最大值,并且窗口移动时最大值是可以更新的。
这里引入单调队列:队列的元素是单调的
本题需要自己实现单调队列,并且需要用deque,因为涉及队首队尾的删除
这个队列应该包含push(int v):队尾入队,如果v > 队列的队尾元素,队尾元素出队,直到队列为空或者v<=队列的队尾元素,然后v 队尾入队;否则v 直接队尾入队,这样队列里就是单调的了
pop(int v):队首出队,如果窗口要删除的元素v == 队列的队首元素,队首元素出队(避免不在窗口的元素确还在队列中);否则就什么也不做。这样当窗口移动时就可以实时更新最大值了。
int front(int v):返回队列的队首元素
- 设置窗口的左端和右端,先将第一个窗口里的元素队列
- 记录窗口的最大值即队列的队首元素。当窗口移动时,右端点入队,同时判断左端点是否为队首元素,若是就pop。
class Myqueue {//从大到小的单调队列
public:
deque<int>q;
void push(int v) {
while(!q.empty()&&v > q.back()) {
q.pop_back();
}
q.push_back(v);
}
void pop() {
q.pop_front();
}
int front() {
return q.front();
}
};
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
Myqueue q;
vector<int>result;
int l,r;
for(l=0,r=0;r<k;r++){//先将第一个窗口放入单调队列
q.push(nums[r]);
}
result.push_back(q.front());//取第一个窗口的最大值
for(;r<nums.size();r++){
if(nums[l]==q.front()){//若移除元素是窗口的最大值,就将它移除
q.pop();
}
l++;
q.push(nums[r]);//压入新的元素
result.push_back(q.front());//收集窗口的最大值
}
return result;
}
};
补充:
一般我们说 top K 问题,就可以用大顶堆或小顶堆来实现,
最大的 K 个:小顶堆
最小的 K 个:大顶堆
堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。从小到大排就是小顶堆,从大到小排就是大顶堆。
大顶堆的根结点是最大值,小顶堆的根结点是最小值。
对于大顶堆:当找到最大值后,将二叉树的最后一个元素于根结点互换,重新构造堆,最终根结点就是次大值。
对于本题要找出现频率>=k的元素,采用小顶堆比较方便,因为每次换掉的都是最大的,最终留下来的就是>=k的元素。
- 对元素的频率进行统计
- 根据元素的频率进行排序,由于要找前k高的元素,所以采用最小堆
- 由于当前堆是从小到大排的,所以弹堆时,从后往前存放结果。
写法1 留下的才是想要的
class Solution {
public:
class myComparison{
public:
bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs){
return lhs.second>rhs.second;//小顶堆
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
unordered_map<int ,int>umap;
for(int i=0;i<nums.size();i++){
umap[nums[i]]++;
}
priority_queue<pair<int,int>,vector<pair<int,int> >,myComparison >pri_que;
for(unordered_map<int,int>::iterator it=umap.begin();it!=umap.end();it++){
pri_que.push(*it);
if(pri_que.size()>k){
pri_que.pop();
}
}
vector<int> result(k);
for(int i=k-1;i>=0;i--){
result[i]=pri_que.top().first;
pri_que.pop();
}
return result;
}
};
写法2 弹出的就是想要的
class MyCompare{
public:
bool operator()(pair<int,int>p1,pair<int,int>p2){//大顶堆,弹出k个就是k个最大的
return p1.second<p2.second;
}
};
class Solution {
public:
vector<int> topKFrequent(vector<int>& nums, int k) {
unordered_map<int,int>map;
priority_queue<pair<int,int>,vector<pair<int,int>>,MyCompare>pq;
vector<int>result;
for(int num:nums){
map[num]++;
}
for(pair<const int,int>p:map){
pq.push(p);
}
for(int i=0;i<k;i++){
pair<int,int>cur=pq.top();
pq.pop();
result.push_back(cur.first);
}
return result;
}
};
总结
- 由于栈结构的特殊性,非常适合做对称匹配类的题目。
- 要找窗口的最值考虑单调队列。
- 一般我们说 top K 问题或者部分排序,就可以用大顶堆或小顶堆来实现,最大的 K 个:小顶堆。最小的 K 个:大顶堆