机器学习
文章平均质量分 50
搞视觉的张小凡
学习是一种信仰
展开
-
半监督学习之了解
一、定义 半监督学习(Semi-Supervised Learning,SSL)是模式识别和机器学习领域研究的重点问题,是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,以及同时使用标记数据,来进行模式识别工作;二、self-training,即自我训练,也称之为伪标签技术,初代半监督思想的经典代表 其基本思路就是,在已标记的数据上训练,然后对未标注数据进行预测,取预测置信度最高的样本直接对其进行标签定义,然后将这类样本纳入当前训练样本中继续训练,直到模型的原创 2021-11-17 15:02:46 · 788 阅读 · 0 评论 -
计算机视觉中注意力机制基础知识(Attention Mechanism)
最近学习了关于计算机视觉中的注意力机制一些基础知识,整理下,方便复习,也分享一下;一、前言二、分类也就是两类;软注意力与强注意力,如下软注意力: 为了更清楚地介绍计算机视觉中的注意力机制,这篇文章将从注意力域(attention domain)的角度来分析几种注意力的实现方法。其中主要是三种注意力域,空间域(spati...原创 2020-03-22 17:44:12 · 1267 阅读 · 0 评论 -
sklearn.metrics.classification_report模块使用与指标分析(生成混淆矩阵评价分类指标)
一、引言 在深度学习中,分类任务评价指标是很重要的,一个好的评价指标对于训练一个好的模型极其关键;如果评价指标不对,对于任务而言是没有意义的。 一般都是用准确率来作为评价指标,然而对于类别不均衡的任务来说,或者在任务中某一个类的准确率非常重要。如果再使用单纯的准确率肯定是不合理的,对任务来说 没有意义。所以我们需要一个好的评价指标来。目前一般都是用精准率,召回率,...原创 2019-10-26 18:01:22 · 34245 阅读 · 5 评论 -
SVM分类器原理详解
第一层、了解SVM 支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。1.1、分类标准的起源:Logistic回归 理解SVM,咱们必须先弄清楚一个概念:线性分类器。 给定一些...转载 2018-07-20 19:31:32 · 13331 阅读 · 0 评论