机器学习:线性回归1----原理推导

本文深入探讨线性回归,从最大似然估计、最小二乘法本质到建模假设,涵盖参数最优解的解析式求解、正则化及梯度下降算法,揭示线性回归的理论与实践应用。
摘要由CSDN通过智能技术生成

第一部分:线性回归原理和推导

根据样本标签值y是否是连续性,将算法分为回归----标签值y连续;分类----标签值y离散。

一.最大似然估计MLE

1.考虑房价数据集中,样本有多个特征x1,x2,…xn,每个样本有一个对应的房价y,一般认为y与特征之间存在某种线性关系:
在这里插入图片描述
中心极限定理意义:实际问题中,很多随机现象可以看做众多因素的独立影响的综合反应,往往近似服从正态分布,例如城市耗电量、测量误差等。
2.似然函数:一种关于统计模型参数的函数。给定输出(样本)x时,关于参数θ的似然函数L(θ|x)等于给定参数θ后发生事件X的概率:L(θ|x)=P(X=x|θ)。
3.最大似然估计(maximum likelihood estimation, MLE)推导
在这里插入图片描述
在这里插入图片描述
由于似然函数表示的是:给定样本特征X情况下,参数为theta时,发生事件Y的概率,因此需要找到使得似然函数(发生事

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值