目录
第一部分:线性回归原理和推导
根据样本标签值y是否是连续性,将算法分为回归----标签值y连续;分类----标签值y离散。
一.最大似然估计MLE
1.考虑房价数据集中,样本有多个特征x1,x2,…xn,每个样本有一个对应的房价y,一般认为y与特征之间存在某种线性关系:
中心极限定理意义:实际问题中,很多随机现象可以看做众多因素的独立影响的综合反应,往往近似服从正态分布,例如城市耗电量、测量误差等。
2.似然函数:一种关于统计模型参数的函数。给定输出(样本)x时,关于参数θ的似然函数L(θ|x)等于给定参数θ后发生事件X的概率:L(θ|x)=P(X=x|θ)。
3.最大似然估计(maximum likelihood estimation, MLE)推导
由于似然函数表示的是:给定样本特征X情况下,参数为theta时,发生事件Y的概率,因此需要找到使得似然函数(发生事