4階唯一解幻方

4階唯一解幻方
※※※※※※
自然數1~16構造而成的「4階幻方」裡面,上部份4× 8矩形內的8個數字,與下部份4×8矩形內的8個數字, 構成三次等冪和成立的,只有以下的1組數字。
1^k+4^k+6^k+7^k+10^k+11^k+13^ k+16^k=2^k+3^k+5^k+8^k+9^k+12^ k+14^k+15^k。
(k=1,2,3)
※※※※※※
◆唯一解幻方簡約◆
(1) 唯一解幻方的立案意境:在自然數構造而成的2^n階幻方中, 上年(2016年)發現的一款新品種,近來, 感覺到其屬性的罕有性以及規格性,因此命名為「唯一解幻」。
(2) 唯一解幻方的定義:一個2^n階,自然數構造而成的幻方, 分為上下兩個部份的時候,它們的組成數構成的數組是等冪和K= 1,2,……(2n-1)。這種幻方,就叫唯一解幻方。
(3) 唯一解幻方的唯一性質:每一層面階數的2^n階唯一解幻方(n≥ 2),不會出現第2組數字,符合等冪和K=1,2,……(2n- 1)。
※※※※※※
◆4階唯一解幻方◆
(1) 上部份4×8矩形內的8個數必定是1,4,6,7,10,11, 13,16。雖然,在這4×8矩形內, 存在著多種位置不盡相同的格式。
(2) 下部份4×8矩形內的8個數字必定是2,3,5,8,9,12, 14,15。雖然,在這4×8矩形內, 存在著多種位置不盡相同的格式。
(3) 上下兩部份構成的等冪和k=1,2,3成立,4階幻方又成立的, 只有這唯一的數組;
1,4,6,7,10,11,13,16=2,3,5,8,9, 12,14,15。
(4) 假如,建造「唯一解幻方」的過程中,數字1出現在下部份4× 8矩形內,那麼,其餘的4,6,7,10,11,13,16, 也必定跟隨出現在下部份的4×8矩形內。反之亦然。
※※※※※※
◆範例◆
※※※
4階唯一解幻方A
 01  16  11  06 
 13  04  07  10 
 08  09  14  03 
 12  05  02  15 
幻和:34
※※※
組成數1,2,3,4,5,6,7,8,9,10,11,12, 13,14,15,16。
※※※※※※
使用「4階唯一解幻方A」,逆向操作自然數密碼:D=1,A= 1,K=2,V=4,T=8。得到一個4階唯一解幻方解碼器
※※※
「4階唯一解幻方解碼器」
[D] [D+A+K+V+T] [D+K+T] [D+A+V]
[D+V+T] [D+A+K] [D+K+V] [D+A+T]
[D+A+K+V] [D+T] [D+A+V+T] [D+K]
[D+A+K+T] [D+V] [D+A] [D+K+V+T]
幻和=4D+2A+2K+2V+2T
※※※※※※
以下,提供16例示範。
№02:D= 2, A=-1, K= 2, V= 4, T= 8。
№03:D= 3, A= 1, K=-2, V= 4, T= 8。
№04:D= 4, A=-1, K=-2, V= 4, T= 8。
№05:D= 5, A= 1, K= 2, V=-4, T= 8。
№06:D= 6, A=-1, K= 2, V=-4, T= 8。
№07:D= 7, A= 1, K=-2, V=-4, T= 8。
№08:D= 8, A=-1, K=-2, V=-4, T= 8。
№09:D= 9, A= 1, K= 2, V= 4, T=-8。
№10:D=10, A=-1, K= 2, V= 4, T=-8。
№11:D=11, A= 1, K=-2, V= 4, T=-8。
№12:D=12, A=-1, K=-2, V= 4, T=-8。
№13:D=13, A= 1, K= 2, V=-4, T=-8。
№14:D=14, A=-1, K= 2, V=-4, T=-8。
№15:D=15, A= 1, K=-2, V=-4, T=-8。
№16:D=16, A=-1, K=-2, V=-4, T=-8。
№16a:D=16, A=-1, K=-4, V=-2, T=-8。
※※※※※※

※※※END※※※

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/20489909/viewspace-2134809/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/20489909/viewspace-2134809/

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的释性差、计算资源消耗大等。研究人员正在不断探索新的方法来决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值