白辰甲
码龄13年
关注
提问 私信
  • 博客:414,157
    社区:381
    414,538
    总访问量
  • 62
    原创
  • 2,070,312
    排名
  • 374
    粉丝
  • 1
    铁粉

个人简介:哈尔滨工业大学博士,关注强化学习(Reinforcement Learning)

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2012-05-21
博客简介:

白辰甲

博客描述:
HIT在读 关注计算机视觉、强化学习 欢迎交流
查看详细资料
个人成就
  • 获得332次点赞
  • 内容获得198次评论
  • 获得1,433次收藏
  • 代码片获得113次分享
创作历程
  • 1篇
    2017年
  • 17篇
    2016年
  • 45篇
    2015年
成就勋章
TA的专栏
  • 自然语言处理(NLP)
    2篇
  • 计算机视觉 deep learning for CV
    5篇
  • 无人驾驶 Autonomous-Driving
  • 集体智慧编程
    8篇
  • 爬虫设计
    1篇
  • 数据结构与算法设计
    8篇
  • MATLAB
    11篇
  • C/C++/MFC
    20篇
  • 计算机图形学
    5篇
  • Python
    1篇
兴趣领域 设置
  • 音视频
    opencv
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于情感词典的中文微博情感倾向分析研究_陈晓东

发布资源 2018.03.27 ·
caj

Principal components analysis(PCA) 主成分分析

本文主要参考资料: CS229 lecture notes by Andrew Ng UFLDL主成分分析 by Andrew Ng 《机器学习实战》第13章“使用PCA来简化数据” 1. 运用背景在机器学习中,PCA是一种常用的方法。其目的是将 nn 维的原始数据近似的用 kk 维来表示,而且近似表示后对数据的损失尽可能的小。我们可以假设原始的 nn 维数据 x(i)x^{
原创
发布博客 2017.02.19 ·
2764 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

【自动驾驶】深度学习用于自动驾驶技术 DeepDriving(ICCV 2015)

无人驾驶技术在最近几年得到了迅猛发展,今天将分享 ICCV 2015 的一篇有关方面的论文: DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving有兴趣的读者可以参考其官网链接。本文并非完全翻译该论文,主要说明其思想和创新点。1. 相关研究论述目前相关研究主要集中于两种方法,第一种方法基于中间的
翻译
发布博客 2016.12.27 ·
14396 阅读 ·
7 点赞 ·
5 评论 ·
41 收藏

【深度学习CV】SVM, Softmax损失函数

Deep learning在计算机视觉方面具有广泛的应用,包括图像分类、目标识别、语义分隔、生成图像描述等各个方面。本系列博客将分享自己在这些方面的学习和认识,如有问题,欢迎交流。在使用卷积神经网络进行分类任务时,往往使用以下几类损失函数:平方误差损失SVM损失softmax损失其中,平方误差损失在分类问题中效果不佳,一般用于回归问题。softmax损失函数和SVM(多分类)损失函数在实际
原创
发布博客 2016.12.26 ·
13848 阅读 ·
12 点赞 ·
2 评论 ·
47 收藏

USB摄像头驱动

发布资源 2016.10.12 ·
zip

USB免驱摄像头采集图像【VS2012+opencv+directShow(CcameraDS)实现】

在Opencv中文网站上有关于directShow和opencv结合采集图像的教程,但是该配置比较老,本文讲述如何基于该教程在 VS2012和opencv2.4.9上进行配置和修改,完成USB免驱双目相机的驱动和图像捕获。
原创
发布博客 2016.10.12 ·
15641 阅读 ·
3 点赞 ·
5 评论 ·
60 收藏

头文件 qedit.h

发布资源 2016.10.12 ·
h

双目立体标定与测量

发布资源 2016.10.10 ·
rar

opencv双目视觉标定、匹配和测量 (附代码)

双目视觉原理方面参照《学习Opencv》和大牛博客 http://blog.csdn.net/chenyusiyuan/article/details/5970799中16-19系列博客。本文主要记录我自己在双目视觉标定,立体匹配,测量中遇到的问题和解决方法,并附有代码,文末有代码下载的地址,欢迎交流。博主使用的相机是USB双目免驱相机,相机驱动见另外一篇博客: USB免驱摄像头采集图像【VS2
原创
发布博客 2016.10.10 ·
33720 阅读 ·
38 点赞 ·
57 评论 ·
301 收藏

(Leetcode 99) Recover Binary Search Tree(恢复二叉排序树BST)

题目原文: Two elements of a binary search tree (BST) are swapped by mistake. Recover the tree without changing its structure题意解释大家都知道,二叉排序树BST的中序序列是由小到大排序的,而如果BST的两个节点交换后,其中序遍历序列一定不再是由小到大排序的。例如原来二
原创
发布博客 2016.05.29 ·
1848 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(Leetcode 95+96)Unique Binary Search Trees 动态规划 分治

1. (Leetcode 96)Unique Binary Search Trees第一道题目,求1-n的数字组成BST的所有方法数 BST即二叉排序树,其先序遍历序列为从小到大排列。题目原文: Given n, how many structurally unique BST’s (binary search trees) that store values 1…n?动态规划,分治
原创
发布博客 2016.05.28 ·
2009 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

用深度优先搜索(DFS)(回溯法)解决N皇后问题(Leetcode 51)

之前介绍了基于全排列的方式解决N皇后的问题: http://blog.csdn.net/bcj296050240/article/details/51107433本文介绍基于DFS的方法解决该问题,依旧是Leetcode51的问题:DFS基于递归,每次搜索填充一行,如果当前填充值满足条件,则递归的填充下一行。如果不满足条件,则循环,如果循环所有值都不满足条件,则回溯。当填充完毕所有行时,得到一
原创
发布博客 2016.04.10 ·
3836 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

用全排列方法解决N皇后问题(Leetcode 51)

有关全排列(Permutation)的思路和代码参见前一篇文章: http://blog.csdn.net/bcj296050240/article/details/51107056这里叙述一下N皇后问题的解决思路: 规则: N皇后在一个N*N的棋盘上,使其不能相互攻击,即任意两个皇后不得处于同一行,同一列或一条对角线上。解决方法: 由于N个皇后的任意两个不能处在同一行,那么肯定是每个皇后占
原创
发布博客 2016.04.09 ·
2881 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

全排列的递归和非递归实现(permutation)(C++)

全排列问题具体问题描述和思路请参考这篇文章: http://blog.csdn.net/morewindows/article/details/7370155/以下是C++代码实现://Permutation1 和 permutation2 分别是基于递归和非递归的实现,都可以实现去除重复的排列//读者也可以自己提交之后到leetcode47 题提交以下,看自己写的对不对#include
原创
发布博客 2016.04.09 ·
2969 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏

集体智慧编程——K近邻分类器预测价格

KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近;K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这
原创
发布博客 2016.03.15 ·
1254 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

集体智慧编程——使用决策树发现潜在客户

用决策树建模预测谁是潜在的客户,这里将客户分为两种类型,根据训练数据中的判定条件,构建决策树,构建决策树分为以下几个步骤:决策树的节点结构 class decisionnode 中包含了5个数据项,分别是col: 代表该节点用训练数据的哪一列作为判断条件value: 以cols条件的value值作为切分节点,value若为数值型属性,则按照大于小于value进行切分;若Wie标称属性,则按照等
原创
发布博客 2016.03.14 ·
1462 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

集体智慧编程——垃圾邮件过滤器(贝叶斯)-Python实现

介绍垃圾邮件分类器的设计与实现,分为一下几个步骤:特征提取: 将训练样本的正文切分为特征,如果是英文,直接按照空格切分,每个词可以作为一个特征;如果是中文,则需要借助分词器,如jieba分词器等。切分后,将词和所属类别建立一个字典存储。字典的结构是: {word1:{class1:count1, class2:count2}, word2:{class1:count1, class2:coun
原创
发布博客 2016.03.14 ·
7970 阅读 ·
1 点赞 ·
2 评论 ·
24 收藏

集体智慧编程——优化搜索算法:爬山法,模拟退火算法,遗传算法-Python实现

在优化问题中,有两个关键点代价函数:确定问题的形式和规模之后,根据不同的问题,选择要优化的目标。如本文涉及的两个问题中,一个优化目标是使得航班选择最优,共计12个航班,要使得总的票价最少且每个人的等待时间之和最小。第二个问题是学生选择宿舍的问题,每个学生可以实现填报志愿,如果安排的宿舍与志愿完全一致,则代价为0,与第二志愿一致,代价为1,如果没有和志愿一致,代价为3。 故,抽象问题的能力很重要,如
原创
发布博客 2016.03.09 ·
11796 阅读 ·
13 点赞 ·
0 评论 ·
56 收藏

集体智慧编程——神经网络预测点击率-Python实现

本例中用神经网络来实现对搜索关键字点击的预测,在搜索引擎中,用户输入关键字后,引擎会给出搜索结果列表,而后用户会点击其中一个网页。在用户不断的点击行为中,神经网络会不断学习,给用户提供更好的推荐和结果排序。本文的代码实现一个多层感知机网络,第一层接受输入,第二层是隐含层,第三次是输出层。应用反向传播算法(BP)对神经网络进行训练。关于神经网络具体的原理此处不赘述,请参看权威书籍或博客。# -*- c
原创
发布博客 2016.03.07 ·
2946 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

集体智慧编程——搜索与排名-Python实现

学习构建一个简易的搜索引擎,步骤如下:网页抓取:从一个或一组特定的网页开始,根据网页内部链接逐步追踪到其他网页。这样递归进行爬取,直到到达一定深度或达到一定数量为止。建立索引:建立数据表,包含文档中所有单词的位置信息,文档本身不一定要保存到数据库中,索引信息只需简单的保存到一个指向文档所在位置的引用即可。查询和排名:根据合适的网页排序方法,返回一个经过排序的页面列表。网页爬取过程: 首先输
原创
发布博客 2016.03.07 ·
2383 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多