java数据结构 二叉树查找

本文介绍了二叉查找树的概念及其性质,强调了在特定情况下查询和插入的效率。接着,讨论了AVL树作为带有平衡条件的二叉排序树,解释了AVL树的平衡因子和平衡条件。通过示例展示了如何判断和处理不平衡的AVL树,特别是插入节点后的平衡调整。
摘要由CSDN通过智能技术生成

二叉查找树

二叉查找树,又称二叉排序树,具有如下性质

  • 若它的左子树不为空,则左子树上所有
  • 结点的值均小于它的根结构的值
  • 若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值
  • 它的左、右子树也分别为二叉排序树
//树的结点类
public class TreeNode<T> {
   
    //存储数据
    public T data;
    //指向左孩子和右孩子结点
    public TreeNode<T> left,right;
    public TreeNode(T data, TreeNode<T> left, TreeNode<T> right) {
   
        super();
        this.data = data;
        this.left = left;
        this.right = right;
    }
    public TreeNode(T data) {
   
        super();
        this.data = data;
    }
    public TreeNode() {
   
        this.data = null;
        this.left = null;
        this.right =null;   
    }

    public String toString() {
   
        return this.data.toString();
    }   
}
//我们使用泛型保证传入的对象必须具有比较的性质
public class BinarySearchTree<T extends Comparable> {
   
    public TreeNode<T> root;

    public BinarySearchTree() {
   
        super();
    }

    public BinarySearchTree(T x) {
   
        super();
        root=new TreeNode<>(x);
    }

    //判断该树是否为空
    public boolean isEmpty() {
   
        return root==null;
    }

    public boolean contains(T x) {
   
        return contains(x,root);
    }
    //判断当前树是否包含某个对象,对象必须实现Comparable接口或者手动实现比较器,使用递归来完成
    public boolean contains(T x,TreeNode<T> root) {
   
        if(root==null) {
   
            return false;
        } 

        int result=x.compareTo(root.data);
        if(result<0) {
   
            return contains(x,root.left); 
        }else if(result >0) {
   
            return contains(x,root.right);
        }else{
   
            return true;
        }
    } 

    public T findMax() {
   
        return findMax(root);
    }
    //查找最大值
    public T findMax(TreeNode<T> root)
    {
   
        if(root==null) {
   
            return null;
        }else if(root.right==null) {
   
            return root
/** * 根据等级查询类目 * * @param level * @return */ @Override public List queryCategoryTree(Integer level) { //查询当前级别下类目 List list = categoryDAO.list(level); //组装好的类目,返回前端 List categoryTree = new ArrayList(); //所有类目 List allDTOList = new ArrayList(); if (CollectionUtils.isEmpty(list)) { return categoryTree; } for (CategoryDO categoryDO : list) { allDTOList.add(new CategoryTreeDTO().convertDOToDTO(categoryDO)); } //当前等级类目 categoryTree = allDTOList.stream().filter(dto -> level.equals(dto.getLevel())).collect(Collectors.toList()); for (CategoryTreeDTO categoryTreeDTO : categoryTree) { //组装类目为结构 assembleTree(categoryTreeDTO, allDTOList,Constants.CATEGORY_MAX_LEVEL - level); } return categoryTree; } /** * 组装 * * @param categoryTreeDTO * @param allList * @param remainRecursionCount 剩余递归次数 * @return */ public CategoryTreeDTO assembleTree(CategoryTreeDTO categoryTreeDTO, List allList, int remainRecursionCount) { remainRecursionCount--; //最大递归次数不超过Constants.CATEGORY_MAX_LEVEL-level次,防止坏数据死循环 if(remainRecursionCount < 0){ return categoryTreeDTO; } String categoryCode = categoryTreeDTO.getCategoryCode(); Integer level = categoryTreeDTO.getLevel(); //到达最后等级返回 if (Constants.CATEGORY_MAX_LEVEL == level) { return categoryTreeDTO; } //子类目 List child = allList.stream().filter(a -> categoryCode.equals(a.getParentCode())).collect(Collectors.toList()); if (null == child) { return categoryTreeDTO; } categoryTreeDTO.setChildren(child); //组装子类目 for (CategoryTreeDTO dto : child) { assembleTree(dto, allList,remainRecursionCount); } return categoryTreeDTO; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值