【题目大意】
有 N 支球队,互相之间已经进行了一些比赛,还剩下 M 场没有比。现在给出各支球队目前的总分以及还剩下哪 M 场没有比,问能否合理安排这 M 场比赛的结果,使得第 N 支球队最后的总分大于其他任何一支球队的总分。已知每场比赛胜者得 2 分,败者 0 分,平局则各得 1 分。(1 <= N <= 100, 0 <= M <= 1000)
【建模方法】
有 N 支球队,互相之间已经进行了一些比赛,还剩下 M 场没有比。现在给出各支球队目前的总分以及还剩下哪 M 场没有比,问能否合理安排这 M 场比赛的结果,使得第 N 支球队最后的总分大于其他任何一支球队的总分。已知每场比赛胜者得 2 分,败者 0 分,平局则各得 1 分。(1 <= N <= 100, 0 <= M <= 1000)
【建模方法】
首先,所有跟球队 N 相关的比赛都要让球队 N 赢。如果此时仍有某支球队的总分大于等于球队 N 的总分,则已经不可能满足要求;否则按如下方法建图:每场比赛 i(不包括与球队 N 相关的比赛)作为一个点并加边(s, i, 2),每支球队 j(不包括球队 N)作为一个点并加边(j, t, score[N]-score[j]-1),每场比赛向与其关联的两支球队 u, v 连边(i, u, 2), (i, v, 2)。若最大流等于 2*比赛场数(不包括与球队 N 相关的比赛)则可以满足要求
注意数组要开够,m是1000!!!
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
最大流开始//
typedef int cap_type;
#define MAX_V 1200 + 30 + 16
// 用于表示边的结构体(终点、容量、反向边)
struct edge
{
int to, rev;
cap_type cap;
edge(int to, cap_type cap, int rev) : to(to), cap(cap), rev(rev)
{}
};
vector <edge> G[MAX_V]; // 图的邻接表表示
int level[MAX_V]; // 顶点到源点的距离标号
int iter[MAX_V]; // 当前弧,在其之前的边已经没有用了
// 向图中加入一条从from到to的容量为cap的边
void add_edge(int from, int to, int cap)
{
G[from].push_back(edge(to, cap, G[to].size()));
G[to].push_back(edge(from, 0, G[from].size() - 1));
}
// 通过BFS计算从源点出发的距离标号
void bfs(int s)
{
memset(level, -1, sizeof(level));
queue<int> que;
level[s] = 0;
que.push(s);
while (!que.empty())
{
int v = que.front();
que.pop();
for (int i = 0; i < G[v].size(); ++i)
{
edge &e = G[v][i];
if (e.cap > 0 && level[e.to] < 0)
{
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
// 通过DFS寻找增广路
cap_type dfs(int v, int t, cap_type f)
{
if (v == t)
{
return f;
}
for (int &i = iter[v]; i < G[v].size(); ++i)
{
edge &e = G[v][i];
if (e.cap > 0 && level[v] < level[e.to])
{
cap_type d = dfs(e.to, t, min(f, e.cap));
if (d > 0)
{
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
// 求解从s到t的最大流
cap_type max_flow(int s, int t)
{
cap_type flow = 0;
for (;;)
{
bfs(s);
if (level[t] < 0)
{
return flow;
}
memset(iter, 0, sizeof(iter));
cap_type f;
while ((f = dfs(s, t, 0x3f3f3f3f3f3f3f3f)) > 0)
{
flow += f;
}
}
}
vector<int>g[105];
int grade[MAX_V];
///最大流结束/
int main()
{
int n,m,u,v;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=0;i<=n+m+50;i++) G[i].clear();
for(int i=0;i<=n;i++) g[i].clear();
int ma = 0,tot = 1,k;
for(int i=1;i<=n;i++) {
scanf("%d",&grade[i]);
if(ma<grade[i]) ma = grade[i],k=i;
}
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
if(u==n||v==n) grade[n]+=2;
else
{
g[u].push_back(tot);
g[v].push_back(tot);
tot++;
}
}
if(k!=n&&grade[k]>=grade[n])
{
printf("NO\n");
continue;
}
int s = m+n+2; int t = s+1;
for(int i=1;i<n;i++) add_edge(s,i,grade[n]-grade[i]-1);
for(int i=1;i<tot;i++) add_edge(i+n,t,2);
for(int i=1;i<n;i++)
{
int len = g[i].size();
for(int j=0;j<len;j++)
{
int k = g[i][j];
add_edge(i,k+n,2);
}
}
if( max_flow(s,t)==2*(tot-1)) puts("YES");
else puts("NO");
}
return 0;
}