题目大意:
给了N个点和M条边,每个点的权值可以是0可以是1,M条边有一个边权和一个操作,问是否存在一个点权赋值方式,满足m条边的两个端点的权值通过该边的操作和该边的权值相等。挑战上经典的2-sat问题。
列出一个真值表,看着建图就行了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std;
const int maxn = 1000+10;
struct node
{
int to;
int next;
node(){}
node(int a,int b):to(a),next(b){}
}edge[4000005];
int head[maxn*2],dfn[maxn*2],low[maxn*2],vis[maxn*2],cnt,ti,clo[maxn];
int tot;
stack<int>s;
void add_edge(int u,int v)
{
edge[tot] = node(v,head[u]);
head[u] = tot++;
}
void tarjan(int u)
{
dfn[u] = low[u] = ++ti;
vis[u] = 1; s.push(u);
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v = edge[i].to;
if(!dfn[v])
{
tarjan(v);
low[u] = min(low[u],low[v]);
}
else if(vis[v]==1)
low[u] = min(low[u],dfn[v]);
}
if(low[u]==dfn[u])
{
int y; cnt++;
do{
y = s.top(); s.pop();
clo[y] = cnt; vis[y] = 2;
}while(y!=u);
}
}
int main()
{
int n,m,a,b,c;
char op[5];
while(scanf("%d%d",&n,&m)!=EOF)
{
tot = 0; memset(head,-1,sizeof(head));
for(int i=0;i<m;i++)
{
scanf("%d%d%d%s",&a,&b,&c,op);
if(op[0]=='A')
{
if(c==1){
add_edge(2*a,2*a+1);
add_edge(b*2,2*b+1);
}else{
add_edge(2*a+1,2*b);
add_edge(2*b+1,2*a);
}
}
else if(op[0]=='O')
{
if(c==1)
{
add_edge(2*a,b*2+1);
add_edge(2*b,2*a+1);
}
else
{
add_edge(2*a+1,2*a);
add_edge(2*b+1,2*b);
}
}
else if(op[0]=='X')
{
if(c==1)
{
add_edge(2*a,2*b+1);
add_edge(2*a+1,2*b);
add_edge(2*b,2*a+1);
add_edge(2*b+1,2*a);
}
else
{
add_edge(2*a,2*b);
add_edge(2*a+1,2*b+1);
add_edge(2*b,2*a);
add_edge(2*b+1,2*a+1);
}
}
}
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
cnt = 0; ti = 0; int f = 1;
for(int i=0;i<2*n;i++) if(!dfn[i]) tarjan(i);
for(int i=0;i<n;i++)
if(clo[2*i]==clo[i*2+1]) { f=0;break; }
if(f) puts("YES");
else puts("NO");
}
return 0;
}