先求出最小生成树,然后n^2枚举两个点,在两个点之间连一条边,就形成了一个环,然后求出两点间人数的和除以那个环在树上的边的最大边,更新最大值.求最大权值边可以用熟练剖分.复杂度n^2logn.
#include <cstdio>
#include <cstring>
#include <vector>
#include<cmath>
#include <algorithm>
using namespace std;
#define Del(a,b) memset(a,b,sizeof(a))
const int N = 10005;
const int inf = 0x3f3f3f3f;
const int maxn = 1005;
int c[maxn];
double x[maxn],y[maxn];
double bmap[maxn][maxn];
int vis[maxn];
int pre[maxn];
double lowc[maxn];
int dep[N],siz[N],fa[N],id[N],son[N],top[N];
double val[maxn];
int num;
vector<int> v[N];
double res = -inf*1.0;
struct tree
{
int x,y;
double val;
void read(int a,int b,double c){
x = a;
y = b;
val = c;
}
};
tree e[N];
inline double cla(int a,int b)
{
return sqrt((x[a]-x[b])*(x[a]-x[b])+(y[a]-y[b])*(y[a]-y[b]));
}
inline double prim(double cost[maxn][maxn],int n)
{
double ans = 0;
for(int i=0;i<n;i++) pre[i] = 0;
memset(vis,0,sizeof(vis));
vis[0] = true;
for(int i=1;i<n;i++) lowc[i] = cost[0][i];
for(int i=1;i<n;i++)
{
double minc = inf*1.0;
int p = -1;
for(int j=0;j<n;j++)
if(!vis[j]&&minc>lowc[j])
{
minc = lowc[j];
p = j;
}
if(minc==inf*1.0) return -1;
ans += minc;
e[i].read(pre[p]+1,p+1,minc);
v[pre[p]+1].push_back(p+1);
v[p+1].push_back(pre[p]+1);
vis[p] = true;
for(int j=0;j<n;j++)
{
if(!vis[j]&&lowc[j]>cost[p][j]){
lowc[j] = cost[p][j];
pre[j] = p;
}
}
}
return ans;
}
void dfs1(int u, int f, int d) {
dep[u] = d;
siz[u] = 1;
son[u] = 0;
fa[u] = f;
for (int i = 0; i < v[u].size(); i++) {
int ff = v[u][i];
if (ff == f) continue;
dfs1(ff, u, d + 1);
siz[u] += siz[ff];
if (siz[son[u]] < siz[ff])
son[u] = ff;
}
}
void dfs2(int u, int tp) {
top[u] = tp;
id[u] = ++num;
if (son[u]) dfs2(son[u], tp);
for (int i = 0; i < v[u].size(); i++) {
int ff = v[u][i];
if (ff == fa[u] || ff == son[u]) continue;
dfs2(ff, ff);
}
}
#define lson(x) ((x<<1))
#define rson(x) ((x<<1)+1)
struct Tree
{
int l,r;
double val;
};
Tree tree[4*N];
void pushup(int x) {
tree[x].val = max(tree[lson(x)].val, tree[rson(x)].val);
}
void build(int l,int r,int v)
{
tree[v].l=l;
tree[v].r=r;
if(l==r)
{
tree[v].val = val[l];
return ;
}
int mid=(l+r)>>1;
build(l,mid,v*2);
build(mid+1,r,v*2+1);
pushup(v);
}
void update(int o,int v,int val) //log(n)
{
if(tree[o].l==tree[o].r)
{
tree[o].val = val;
return ;
}
int mid = (tree[o].l+tree[o].r)/2;
if(v<=mid)
update(o*2,v,val);
else
update(o*2+1,v,val);
pushup(o);
}
double query(int x,int l, int r)
{
if (tree[x].l >= l && tree[x].r <= r) {
return tree[x].val;
}
int mid = (tree[x].l + tree[x].r) / 2;
double ans = 0;
if (l <= mid) ans = max(ans, query(lson(x),l,r));
if (r > mid) ans = max(ans, query(rson(x),l,r));
return ans;
}
double Yougth(int u, int v) {
int tp1 = top[u], tp2 = top[v];
double ans = 0;
while (tp1 != tp2) {
//printf("YES\n");
if (dep[tp1] < dep[tp2]) {
swap(tp1, tp2);
swap(u, v);
}
ans = max(query(1,id[tp1], id[u]), ans);
u = fa[tp1];
tp1 = top[u];
}
if (u == v) return ans;
if (dep[u] > dep[v]) swap(u, v);
ans = max(query(1,id[son[u]], id[v]), ans);
return ans;
}
void Clear(int n)
{
for(int i=1;i<=n;i++)
v[i].clear();
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%lf%lf%d",&x[i],&y[i],&c[i]);
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++)
bmap[i][j] = bmap[j][i] = cla(i,j);
double l = prim(bmap,n); res = -inf*1.0;
num = 0;
dfs1(1,0,1);
dfs2(1,1);
for (int i = 1; i < n; i++) {
if (dep[e[i].x] < dep[e[i].y]) swap(e[i].x, e[i].y);
val[id[e[i].x]] = e[i].val;
}
build(1,num,1);
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
int sum = c[i]+c[j];
res = max(res,sum/(l-Yougth(i+1,j+1)));
}
}
printf("%.2f\n",res);
Clear(n);
}
return 0;
}