最近在深入学习栈数据结构,顺便实现了一下用栈实现一个整数计算器的功能。
对于一般用来表达算式的字符串,形如"10+((2+3)*4)-5",我们可不可以自己手写一个计算器用来计算其结果呢?答案显而易见,下面给出详解代码。
(本文旨在讨论数据结构与算法的应用,并不考虑计算器的功能全面性)
1.首先我们定义一个用来将字符串转换成list集合的方法。
public static ArrayList<String> getList(String expression){
ArrayList<String> list = new ArrayList<>();//定义集合,用来存储字符串中的元素
String temp = "";//该字符串用来拼接多位数
//遍历字符串
for(int i = 0;i < expression.length();i++){
char item = expression.charAt(i);
if(item >= 48 && item <= 57){//判断取出值的ASCII码,如果在48至57范围内,则认为是数字
temp += item;
}else {
//不是数字则为运算符
//在将运算符存入集合前,先判断是否有数字未存入集合
if(!temp.equals("")){
list.add(temp);
temp = "";
}
list.add("" + item);
}
}
if(!temp.equals("")){
list.add(temp);
temp = "";
}
return list;
}
2.然后我们定义一个用来比较运算符优先级的方法
public static int priority(String oper){
if(oper.equals("*") || oper.equals("/")){
return 1;
}else if(oper.equals("+") || oper.equals("-")){
return 0;
}else {
throw new RuntimeException();
}
}
3.本文目的是实现后缀表达式的计算,所以在调用getList()方法拿到中缀表达式集合后,我们还需要将中缀表达式转后缀表达式,如:10+((2+3)*4)-5的后缀表达式为:10 2 3 + 4 * + 5 - 。这也是代码的核心部分。
public static List<String> getSuffix(List<String> list){
List<String> suffix = new ArrayList<>();
Stack<String> stack = new Stack<>();
//遍历传过来的中缀表达式
for(String item : list){
//先处理遍历到的值为数字,小括号的情况
if(item.matches("\\d+")){//正则表达式判断是否是一个数字,如果是则直接放入集合
suffix.add(item);
}else if(item.equals("(")){//遇到左括号则直接入栈
stack.push(item);
}else if(item.equals(")")){//遇到右括号,依次将栈顶元素弹栈并放入集合,直到栈顶为左括号为止
while (!stack.peek().equals("(")){
suffix.add(stack.pop());
}
stack.pop();//将栈顶的左括号丢弃
}else {
//剩下的情况则为遍历到运算符(+,-,*,/)
if(stack.isEmpty()){//如果当前栈为空,直接将运算符入栈
stack.push(item);
}else {
/*
剩下都是当前栈不为空的情况,这里的步骤为:
1.如果栈顶为左括号,直接入栈
2.如果当前运算符的优先级小于等于栈顶运算符的优先级,则弹出栈顶运算符存入集合,并重新判断是否满足这4条规则
3.如果当前运算符优先级大于栈顶运算符,直接入栈
4.如果栈为空,直接入栈(在执行第二条时,也有可能将栈的大小变为空)
*/
while (true){
if(stack.size() == 0){
stack.push(item);
break;
}
if(stack.peek().equals("(")){
stack.push(item);
break;
}
if(priority(stack.peek()) >= priority(item)){
suffix.add(stack.pop());
}else {
stack.push(item);
break;
}
}
}
}
}
//最后将栈中剩余元素依次弹栈并存入集合中
while (stack.size() != 0){
suffix.add(stack.pop());
}
return suffix;
}
4.编写一个计算后缀表达式的方法,计算后缀表达式的思路为:遍历后缀表达式,遇到数字则直接压栈;遇到运算符则弹出栈中两个元素进行该运算符对应的运算,并将运算结果压栈。待遍历完成后,最后留在栈中的元素则为最终计算结果。
public static int calculation(List<String> expression){
Stack<String> stack = new Stack<>();
for(String item: expression){//遍历后缀表达式
if(item.matches("\\d+")){//如果是数字,则直接压栈
stack.push(item);
}else {
//是运算符的情况,弹出栈中两个数字,并进行与之对应的运算
int num1 = Integer.parseInt(stack.pop());
int num2 = Integer.parseInt(stack.pop());
int res = 0;
if(item.equals("+")){
res = num1 + num2;
} else if(item.equals("-")){
res = num2 - num1;
}else if(item.equals("*")){
res = num1 * num2;
}else if(item.equals("/")){
res = num2 / num1;
}else {
throw new RuntimeException("运算符有误!");
}
//将运算结果压栈
stack.push(String.valueOf(res));
}
}
return Integer.parseInt(stack.pop());
}
5.我们最后编写一个方法将上述所有方法统一起来
public static int calculator(String expression){
return calculation(getSuffix(getList(expression)));
}
测试一下:
public static void main(String[] args) {
String expression = "10+((2+3)*4)-5";
System.out.println(calculator(expression));
}
运行结果:
完整代码:
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class Suffix {
public static void main(String[] args) {
String expression = "10+((2+3)*4)-5";
System.out.println(calculator(expression));
}
public static int calculator(String expression){
return calculation(getSuffix(getList(expression)));
}
public static int priority(String oper){
if(oper.equals("*") || oper.equals("/")){
return 1;
}else if(oper.equals("+") || oper.equals("-")){
return 0;
}else {
throw new RuntimeException();
}
}
public static int calculation(List<String> expression){
Stack<String> stack = new Stack<>();
for(String item: expression){//遍历后缀表达式
if(item.matches("\\d+")){//如果是数字,则直接压栈
stack.push(item);
}else {
//是运算符的情况,弹出栈中两个数字,并进行与之对应的运算
int num1 = Integer.parseInt(stack.pop());
int num2 = Integer.parseInt(stack.pop());
int res = 0;
if(item.equals("+")){
res = num1 + num2;
} else if(item.equals("-")){
res = num2 - num1;
}else if(item.equals("*")){
res = num1 * num2;
}else if(item.equals("/")){
res = num2 / num1;
}else {
throw new RuntimeException("运算符有误!");
}
//将运算结果压栈
stack.push(String.valueOf(res));
}
}
return Integer.parseInt(stack.pop());
}
public static ArrayList<String> getList(String expression){
ArrayList<String> list = new ArrayList<>();//定义集合,用来存储字符串中的元素
String temp = "";//该字符串用来拼接多位数
//遍历字符串
for(int i = 0;i < expression.length();i++){
char item = expression.charAt(i);
if(item >= 48 && item <= 57){//判断取出值的ASCII码,如果在48至57范围内,则认为是数字
temp += item;
}else {
//不是数字则为运算符
//在将运算符存入集合前,先判断是否有数字未存入集合
if(!temp.equals("")){
list.add(temp);
temp = "";
}
list.add("" + item);
}
}
if(!temp.equals("")){
list.add(temp);
temp = "";
}
return list;
}
public static List<String> getSuffix(List<String> list){
List<String> suffix = new ArrayList<>();
Stack<String> stack = new Stack<>();
//遍历传过来的中缀表达式
for(String item : list){
//先处理遍历到的值为数字,小括号的情况
if(item.matches("\\d+")){//正则表达式判断是否是一个数字,如果是则直接放入集合
suffix.add(item);
}else if(item.equals("(")){//遇到左括号则直接入栈
stack.push(item);
}else if(item.equals(")")){//遇到右括号,依次将栈顶元素弹栈并放入集合,直到栈顶为左括号为止
while (!stack.peek().equals("(")){
suffix.add(stack.pop());
}
stack.pop();//将栈顶的左括号丢弃
}else {
//剩下的情况则为遍历到运算符(+,-,*,/)
if(stack.isEmpty()){//如果当前栈为空,直接将运算符入栈
stack.push(item);
}else {
/*
剩下都是当前栈不为空的情况,这里的步骤为:
1.如果栈顶为左括号,直接入栈
2.如果当前运算符的优先级小于等于栈顶运算符的优先级,则弹出栈顶运算符存入集合,并重新判断是否满足这4条规则
3.如果当前运算符优先级大于栈顶运算符,直接入栈
4.如果栈为空,直接入栈(在执行第二条时,也有可能将栈的大小变为空)
*/
while (true){
if(stack.size() == 0){
stack.push(item);
break;
}
if(stack.peek().equals("(")){
stack.push(item);
break;
}
if(priority(stack.peek()) >= priority(item)){
suffix.add(stack.pop());
}else {
stack.push(item);
break;
}
}
}
}
}
//最后将栈中剩余元素依次弹栈并存入集合中
while (stack.size() != 0){
suffix.add(stack.pop());
}
return suffix;
}
}