Matlab——学习记录篇1——一元二次函数编程实现和图像显示

重点重点!!!!!!!本人使用的Matlab版本是R2021b,如果下面代码在别的版本运行之后有bug显示的话,需要自己到百度寻找相应的函数把错误的地方替换

首先在Matlab上实现对一元二次方程的代码编写: 

实现简单的一元二次方程  x^2-2x-1=0  的代码编程

%% 本程序求解x^2-2x-1=0
p = [1,-2,-1];
%此数组用在roots函数上代表的意思就是上式的二次项系数、一次项系数和常数项
x_fun = roots(p);
fprintf('x^2 - 2x - 1 = 0的结果是:%f和%f\n',x_fun);

可以看到运行改代码之后的结果是

 

 至此,一个简单的一元二次方程 x^2-2x-1=0 求解完成

接下来,我们就要开始实现在Matlab上该方程的图像显示

在Matlab上的代码编写如下:

%%显示函数的图像
fun = fplot(@(x)(x^2-x*2-1));%也可以直接用fplot(@(x)(x^2-x*2-1));用fun来接着这个函数是为了下面的格式更改
fun.Marker = 'x';%添加交叉标记
fun.MarkerEdgeColor = 'b';%将标记颜色更改为蓝色
fun.Color = 'r';%将线条更改为红色线条
fun.LineStyle = ':';%函数线型点线式
grid on;%显示或者隐藏网格线
title('x^2-2x-1');%添加标题
hold on;

运行上面代码得到的图像便是这样的:

如果直接运行fplot(@(x)(x^2-x*2-1))得到的图像是下面这样的:

 

在使用fplot这个函数的时候,我翻阅了一下Matlab里面关于fplot函数的使用方法和里面一些语法并总结了一下:fplot函数有很多种语法,

例如 fplot(f)就是在默认区间 [-5,5] 绘制由函数 y = f(x) 定义的曲线;

        fplot( f, xinterval)将在指定的区间绘图,区间定义为[xmin, xmax]形式的二元素向量。

        等等等等还有好几种语法定义,我就不一 一展示了,有兴趣的可以直接在matlab上查找

接下来,就详细说一下函数格式更改的一些属性变量定义:

        LineStyle 线型:   实线 ‘-’       虚线‘--’        点线‘:’     点划线‘-.’

        Marker 标记:   圆圈‘o’        加号‘+’        叉号‘x’        点‘.’        星号‘*’        等等

        Color 颜色:        红色‘r’        绿色‘g’        蓝色‘b’        甚至还可以用RGB来表示比如红色[1 0 0]  十六进制代码‘#FF0000’

        MarkerEdgeColor 标记颜色:        属性变量定义和上面的Color一样

        还有一个更方便的把线型、标记、颜色都结合起来的属性变量是LineSpec,比如‘-or’意思就是线型为‘-’实线    标记为‘o’圆圈   颜色为‘r’红色  使用的方法可以直接加在fplot函数后面

fun = fplot(@(x)(x^2-x*2-1),'-or');
grid on;%显示或者隐藏网格线
title('x^2-2x-1');%添加标题
hold on;

图像显示效果如下:

 

总结

在Matlab上可以用一维数组和roots函数来实现方程式的自定义,接着用fplot函数来实现图像的显示

此外,实现方程式的自定义函数不止roots,还可以用solve函数等等,其余函数读者感兴趣的可以自行百度

最后最后,非常重要!!!!制作不易,复制转载的请标明出处!!!以上都是萌新的自学之路,有不对的地方大佬们请康概指点

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

喜欢喜欢喝奶茶的猪

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值