数字心理健康中的人工智能聊天机器人

本文探讨AI聊天机器人革新数字心理健康的潜力与挑战。它能提供多领域支持,尤其在心理保健领域有临床成果,但也面临缺乏人际联系、信息准确性等问题。同时,需应对道德、法律、偏见等挑战,强调整合HAI原则、加强监管和范围审查。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

       人工智能(AI)聊天机器人自2022年以来备受关注。凭借大数据、自然语言处理(NLP)和机器学习(ML)算法支持,它们具有扩展能力、提高生产力并在各个领域提供指导和支持的潜力。人工智能与人类(HAI)被提出,以帮助将人类价值观、同理心和道德考量融入AI中,以解决AI聊天机器人的局限性并增强其效力。心理健康是一个关键的全球问题,对个人、社区和经济都有重大影响。利用AI和ML的数字心理健康解决方案应运而生,以应对心理健康护理中的获取、社会污名和成本等挑战。尽管具有潜力,但围绕这些技术的道德和法律问题仍不确定。

        本文探讨了AI聊天机器人革新数字心理健康的潜力,同时强调了对道德、负责任和值得信赖的AI算法的需求。本文研究以三个关键问题为指导:AI聊天机器人对技术整合的影响、利益与伤害之间的平衡,以及AI应用中偏见和偏见的缓解。在方法上,本文进行了广泛的数据库和搜索引擎搜索,利用与AI聊天机器人和数字心理健康相关的关键词。有意义地选择了同行评审的期刊文章和媒体来源来解决研究问题,从而对这一不断发展的主题的当前知识状态进行了全面分析。

        总之,AI聊天机器人在转变数字心理健康方面具有潜力,但必须应对复杂的道德和实际挑战。整合HAI原则、负责任的监管和范围审查对于最大化其利益并最小化潜在风险至关重要。协作方法和现代化教育解决方案可能会增强AI应用的负责任使用,并减少偏见,确保数字心理健康领域更具包容性和效力。

关键词:人工智能与人类(HAI);AI聊天机器人;数字心理健康;心理健康护理

1 引言

        人工智能(AI)聊天机器人是智能的对话式计算机系统,可以与人类合作或独立运行,利用大数据、自然语言处理(NLP)和机器学习(ML)算法来思考、学习和完成任务,以扩展其能力、提高生产力,并提供对话、指导和支持[1, 2]。也被称为对话代理或使用大型语言模型的生成式AI,它们是过去15年来在机器人学、机器学习、AI模型和自然语言处理领域取得进展的结果。自ChatGPT于2022年11月推出以来,AI聊天机器人变得卓越起来[3]。

        AI聊天机器人有机会提供超出人类能力的深入回应。然而,它们可能缺乏个性化和同理心的触感。有人建议,人工智能与人类(HAI)可能有助于克服这些局限,人类与人工智能在共同任务或目标上相互激发优势,从而实现高效、更安全、可持续和愉悦的工作和生活。HAI概念与人道技术中心在整合同理心、同情心和责任等人类价值观方面的工作是一致的[4]。

        心理健康是一个影响全球数百万人的关键问题[5]。举例来说,约有20%的澳大利亚成年人患有心理障碍,考虑终身心理疾病经历后这一比例增加至44%[6],导致经济损失数十亿美元[7],因为健康状况下降和寿命缩短[8]。不幸的是,许多人由于诸如缺乏获取心理健康服务、社会污名和成本等各种障碍而无法获得所需的帮助[9–12]。数字心理健康解决方案以技术针对年轻人进行心理健康评估、支持、预防和治疗[13]。例如,AI和ML模型用于预测心理疾病[14],AI聊天机器人用于心理支持[15]。然而,这些工具的道德和法律影响存在不确定性。

        这篇叙事文献综述的目的是展示AI聊天机器人在帮助各种人群获取可访问的数字心理健康方面,通过相关、可扩展和可持续的数据驱动洞见所具有的潜力,但受到了创造道德、负责任和值得信赖的AI算法需求的挑战。

2 方法

        这篇叙事文献综述是根据Demiris等人[16]所提出的四个步骤进行调整的:(1) 对多个数据库和搜索引擎进行搜索;(2) 从相关文章中确定并使用相关的关键词;(3) 评估相关文章的摘要和正文,并包括那些符合研究目标的文章;以及(4) 通过总结和综合研究结果并将其整合到综述中来记录结果。

        由于主题的多样性,本文未能进行系统性综述。此外,该主题仍在不断发展,并没有足够符合系统性综述严格标准的研究。此外,数字心理健康领域是跨学科的,涵盖了心理学、技术和医疗保健的方面。这导致了各种研究方法、方法论和研究设计的广泛应用,使得应用严格的系统性综述标准变得具有挑战性。相反,本文以教育性的方式呈现了有意选择的文章,展示了AI聊天机器人可能对数字心理健康产生影响。通过有意选择与研究目标相符的文章,并以综合的方式审查它们,获得了宝贵的洞见,并在一篇连贯的叙事文献综述中呈现了这些洞见。这种方法允许考虑主题内的各种观点和想法,有助于更全面地理解主题内容。

        选取的同行评审期刊文章、媒体文章和会议记录是通过对计算机化数据库的搜索、有意的在线搜索和权威文本的评估获得的,这些评估基于编辑提出的三个研究问题:"AI聊天机器人:威胁还是机遇?"[3]。这些研究问题被用作探索感兴趣主题的指南,因为目前尚无法对科学发展的全面理解:

  • 1. AI聊天机器人的发展被认为标志着一个新时代的到来,提供了将技术融入人们生活和交互的重大进步。这种情况可能是真实的吗?如果是,这种影响将最广泛和有效地体现在哪些方面?
  • 2. 是否可能在这些技术的影响方面取得平衡,以使潜在的危害最小化,同时潜在的利益最大化并共享?
  • 3. 越来越多的证据表明,许多AI应用的设计和实施,即算法,都包含偏见。如何应对和纠正这种情况?

数据库搜索使用了Scopus、ScienceDirect、Sage和计算机协会(ACM)数字图书馆。搜索引擎使用的是PubMed、Google学术和IEEE Xplore。使用的搜索词是"AI聊天机器人" OR "生成式人工智能" OR "对话代理" AND "数字心理健康" OR "心理保健"。

        以下标准选择用于评估:

包含标准:

  • 发表在同行评审期刊、媒体文章和会议记录中的研究。
  • 以英语发表的研究。
  • 发表于2010年至2023年之间的研究。
  • 研究调查AI聊天机器人、生成式人工智能或对话代理在数字心理健康或心理保健中的应用。
  • 报告AI聊天机器人、生成式人工智能或对话代理在数字心理健康或心理保健中的有效性的研究。

排除标准:

  • 未发表在同行评审期刊、媒体文章和会议记录中的研究。
  • 非英语发表的研究。 • 发表于2010年之前或2023年之后的研究。
  • 未调查AI聊天机器人、生成式人工智能或对话代理在数字心理健康或心理保健中的应用的研究。
  • 未报告AI聊天机器人、生成式人工智能或对话代理在数字心理健康或心理保健中的有效性的研究。

        布尔运算符如AND和OR被用于组合搜索词并细化搜索结果。例如,在"AI聊天机器人"和"生成式人工智能"之间使用OR运算符检索包含这两个术语之一的文章。类似地,使用AND运算符在"对话代理"和"数字心理健康"之间检索包含这两个术语的文章。布尔运算符有助于缩小搜索结果范围并使其更与研究问题相关。

        基于(1)与指导性研究问题的相关性,(2)展示理论和实证研究和发展的示例,以及(3)突出问题和可能的解决方案,探索了相关文章及其参考文献清单。这些文章应用了最佳证据综合法,对该主题的当前知识进行了完整、批判和客观的分析。 总体而言,该方法展示了一种系统化和透明的方法,通过确保全面搜索、关注相关文章并对发现进行公正综合,从而减少偏见。然而,值得注意的是文献本身可能存在偏见;因此,对研究进行了批判性评估,并承认了所选文章中可能存在的任何潜在局限性或偏见。

3 结果

3.1 AI聊天机器人对技术整合的影响

        研究问题 1:AI聊天机器人的发展被认为标志着一个新时代的到来,提供了将技术融入人们生活和交互的重大进步。这种情况可能是真实的吗?如果是,这种影响将最广泛和有效地体现在哪些方面?

        AI聊天机器人的使用有可能带来重大的进步,影响人们生活和交互的各个方面,尤其是在无法或不愿获得人与人之间交互的情况下[18]。AI聊天机器人可能提供客户服务和支持、医疗保健和心理健康支持、教育和电子学习、个人生产力和协助、语言翻译和交流,以及社交陪伴和娱乐[19,20]。AI聊天机器人的多种用途和大量的实证文献混合意味着专注于一个领域是合理的。

        心理保健是一个很好的例子,因为AI聊天机器人在这个领域被认为是一个可行的资源已有十多年[21]。对于AI聊天机器人提供相关并持续可获得的支持,有着令人期待的临床结果,如成年人的抑郁症[24]、大学生的焦虑症[25,26]以及成年人的注意力缺陷/多动症状[27]。

        AI聊天机器人可能有助于解决心理健康问题求助过程中的障碍,提供个性化、可访问、经济实惠和无污名的帮助,促进早期干预并为研究和政策制定提供有价值的洞见[28–31]。AI聊天机器人在监测、沟通、记忆辅助、筛查和诊断方面可能特别有用,旨在理解患者的情绪,并协助分析大量数据集。例如,算法可能会识别出人类分析员可能会忽略的模式和趋势。通过分析患者的病史、基因数据和其他相关因素,算法可以生成量身定制的症状检查和治疗建议,考虑到个体的独特需求和情况。

        在考虑AI聊天机器人的机会时,还应考虑到所面临的挑战,如缺乏人际联系、对技术的依赖、信息的准确性和可靠性、道德和隐私考量以及误诊和对问题的理解有限[28–31]。

        一份2023年的心理健康聊天机器人综述发现市场上有10款针对各种心理健康问题(如焦虑和抑郁)和用户(如农村居民、轮班工人、学生、退伍军人和青少年)的应用程序,以及多种目的(如改善社交或求职面试技能)[18]。该综述对AI聊天机器人感兴趣是因为它们为人们提供了可获得、经济实惠和便捷的社交和心理支持。然而,弱势用户可能会高估其利益并面临风险,尤其在危机期间,因为据称AI聊天机器人无法识别危机情况。因此,发现AI聊天机器人的语义不足,因为它们尚未发展到足以理解用户词语背后的语境,并未能有效或完全做出回应。

        用户可能无法意识到人类与类似人类的聊天机器人之间的区别。这些限制是人为因素,教育是有效合作以制定可持续解决方案的关键[32]。用户和从业者需要指导,就像通常所需的数字心理健康平台和干预措施一样[33]。

        心理学、精神病学、人工智能和医疗保健等不同领域的专业人士,以及教育工作者、政策制定者、计算机科学家和从事心理保健的技术开发者,意味着需要克服重大挑战才能实现整体利益[34]。心理保健专业人士和政策制定者是AI聊天机器人成为智能系统工具箱中有用工具的关键。然而,似乎研究生和研究科学家最能通过他们的意愿和能力有效与计算机科学家和技术开发者合作推动变革。

        AI聊天机器人作为辅助工具而不是取代人类心理保健专业人士的前景很有希望[18,20]。一项对数字心理健康干预(DMHIs)的2021年综述发现,AI聊天机器人有望帮助心理保健专业人员满足过剩的服务需求[34]。一项2023年对随机对照试验(RCTs)的系统综述和荟萃分析发现,AI聊天机器人对各种心理健康问题是可接受的[35]。例如,一项RCT发现一个完全自动化的对话代理Woebot,对于年轻成年人的焦虑和抑郁症进行认知行为疗法(CBT)是一种可行、引人入胜且有效的方式[25]。Woebot[36]和Wysa[37]在与用户建立治疗性联结方面具有潜力。

        尽管AI聊天机器人作为一种引人入胜和可接受的交付治疗的方式是可行的,但需要进行更多研究来确定什么可能有助于建立数字治疗联盟[36,37]并减少误解[38]。相比其他数字干预措施,心理健康聊天机器人的流失率较低[24,39]。然而,辍学率需要关注,对其适用于哪些疾病也需要明确[40]。一些综述发现AI聊天机器人在识别有自杀风险的患者[41–43]、以及通过实时集成社交媒体的自然语言处理进行分诊和治疗方面有很高的潜力[44–46]。

        Generative Pre-Trained Transformer(GPT)程序的发展,如ChatGPT 4,意味着AI聊天机器人可能被用于自杀预防[47]。然而,需要更好地理解AI聊天机器人的限制,如负面情绪、狭隘思维、习语、幻觉和逻辑谬误。一项关于与人们自杀思想相关的信息的研究寻求从他们的词语排列、情绪和理性中获得见解[48]。虽然AI聊天机器人的幻觉和谬误需要人类干预,但可以通过现成的算法和公开可用的数据检测习语、负面情绪和狭隘语言。然而,在一名比利时男子的遗孀将她丈夫的自杀归咎于聊天机器人Eliza之后,人们开始关注安全问题[49]。

        需要进行定性研究来帮助减少糟糕的语义和错误,并增加对AI聊天机器人的信任。例如,需要对回顾性数据进行主题分析,以识别发送给心理健康聊天机器人的信息的共同主题,从而提高AI聊天机器人作为支持来源的效果。AI聊天机器人可以通过用于情感分析的自然语言处理(NLP)来改进问题领域,这是一种快速有效的定性数据分析方法,有助于理解多维在线反馈。

        以下是识别和评估AI聊天机器人影响的建议:

  • 进行使用AI聊天机器人的定性研究,以展示它们如何通过(1)识别用户需求,(2)了解其使用障碍,(3)评估用户体验和AI聊天机器人影响以及(4)整合人工智能方法来克服问题领域的可访问性、参与度和有效性。
  • 通过进行纵向研究和随机对照试验(RCTs)来为经验性证据做出贡献,以查看AI聊天机器人可能推荐用于哪些心理健康状况和人群。
  • 确定实际的辍学预测可能性,通过将先进的机器学习模型(例如,深度神经网络)应用于特征集的分析(例如,基线用户特征、用户自报告的环境和AI聊天机器人反馈、被动检测到的用户行为以及用户的临床功能)来识别高风险的辍学个体。

3.2 AI聊天机器人的利弊平衡

        由于缺乏广泛合作的国际标准以及AI聊天机器人的多样化应用,很难在全球范围内回答这个问题。然而,考虑到即将发生的变化规模,目前在AI研究、教育、社会适应、创新、就业机会和创造就业方面的投资似乎是不足的。

        AI在心理健康领域的新颖性和复杂性意味着现在是时候关注尖端教育,比如数字心理健康和信息学的专业大学课程,这些课程使用经过同行评审和定期更新的教材和模块。意图是激发辨别技能和批判性思维,从多个学科中获取技能,以帮助开创心理保健和人工智能技术行业的利益,同时缓解心理疾病带来的成本增加。虽然AI聊天机器人备受瞩目,但它们在协助数字用户解决心理健康问题方面尚未发挥出潜力,这些用户主要是年轻人[18]。  

        质量好、有效且可用的聊天机器人,比如Woebot和Wysa,可用于协助心理健康治疗[36,37]。然而,需要进行各种研究来展示更广泛范围的心理健康障碍和症状的证据。此外,目前的发展主要是由对心理健康感兴趣的技术方面推动的,而不是由精通技术的心理健康专业人士推动的。技术研究人员和心理健康护理研究人员之间的沟通风格和方法论的差异(即基于模式与基于假设的)限制了这些方法的结合。另一个障碍是高水平研究人员的机会有限,这些研究人员有能力理解并实施混合方法。

        然而,在心理保健领域,有很大的潜力可以作为一个示例,AI聊天机器人可能会协助为各种用户和目标提供(成本)有效的解决方案[21-24,36-38]。心理保健专业人员可能需要接受AI聊天机器人,以使其使用更具生产力[50]。此外,如果要实现将技术融入人们的生活和互动中取得重大进展,还需要有意识地拓宽生产力的衡量方式。例如,如何准确衡量AI聊天机器人对经济和人民健康的贡献?尽管发达国家的国内生产总值(GDP)可能会增长,但由于AI的干扰可能会导致一些失业。虽然生产力、可负担性和可访问性是重要的推动因素,但考虑到心理健康和人力资本的政策也同样重要。

        AI聊天机器人对生产力的影响需要考虑国家和国际经济、标准和法规。显然,并非所有政府在原则上都是一致的。此外,数字鸿沟在不进一步边缘化未受服务和未服务人群方面存在疑问[34]。因此,需要在全球风险(如战争)和气候变化的物理影响所带来的成本等方面考虑生产力和人性。虽然一些政府大量投资于国防、重工业脱碳和能源系统转型,但对AI技术的投资也面临着竞争性需求。与此同时,ChatGPT的出现表明了利益相关者在应对技术发展速度方面面临的困难。

        目前尚不清楚澳大利亚生产力委员会如何计算AI对澳大利亚经济的提振,以至于在未来十年内预测国内生产总值(GDP)将增长66.67%至266.67%之间[7]。在2023年,澳大利亚政府展望未来40年的代际公平,预测年轻一代将承担更重的财务负担[51]。这就引出了这样一个问题,即这些国家如何管理和最大化正在进行的国民经济的重大变革,同时也要有效地整合AI技术的影响。

        以澳大利亚的心理保健为例,有必要探讨现有的安全和质量结构,看看AI是否与之一致,然后再审视其经济潜力。澳大利亚的心理保健服务国家标准为医院和社区服务中的安全和质量提供了一个框架,并主要旨在规范心理保健专业人员的实践[52]。然而,在COVID-19大流行期间,由于心理保健需求剧增,供给不足,数字心理保健填补了这一服务空白,最终导致2020年制定了《国家数字心理保健安全与质量标准》,旨在改善数字心理保健服务提供的安全性和质量[55]。然而,心理保健专业人员和政策制定者目前正在面对AI带来的机遇和挑战[56]。例如,ChatGPT中使用快速工程来规避社交媒体中的内容过滤器。这可能会导致危害和问题,例如利用脆弱性。

        2018年,澳大利亚政府采用了一项关于“负责任”的AI的自愿道德框架,旨在指导企业和政府负责任地设计、开发和实施AI[57]。然而,主流AI聊天机器人主要是在美国开发的。澳大利亚和美国是寻求意见或计划对AI聊天机器人进行监管的各种国家之一[58]。欧盟实施了数字服务法和数字市场法,旨在创建一个更安全的数字空间,保护用户的基本权利,并为企业建立一个公平竞争的环境[59]。需要确保使用多样化和代表性的数据集开发和训练AI算法,并且由人类专家严格验证和验证AI生成的任何见解。ChatGPT的所有者OpenAI建议积极管理这些“前沿AI”模型的风险[60]。OpenAI最初建议进行部署前的风险评估,对模型行为进行外部审查,使用风险评估来指导部署决策,以及监测和回应有关模型能力和用途的新信息。

        这基本上取决于用户是否公开他们对AI的使用,采取措施保护隐私和机密性,并谨慎使用以优化其性能[61]。例如,招聘人员可能会使用AI聊天机器人来完成他们的职责,这会削弱寻求人类输入的意图,并引发关于合作工作价值的重要问题,如果无法建立和维护信任[62]。AI聊天机器人的一个主要问题是,它们是一种新技术,由于能够创建各种恶意代码和算法,可能在网络安全风险方面变得根本性普遍化,这可能导致基础设施或金融系统混乱[63]。

        在心理健康研究中使用AI已经被充分确定为有可能产生重要见解并改善患有心理健康障碍的个人结果的潜力[64,65]。然而,重要的是要仔细分类和规范“高”风险,并在每一步优先考虑道德考量。AI聊天机器人在心理健康和危机支持方面的不断增加的使用意味着利益相关者需要增加他们的注意力和教育,以便有效利用这些工具[18,66]。例如,在数字心理健康中呼吁公平意识的AI以促进多样性和包容性[67],并且建议可解释的AI作为一个工具,用于展示用户和从业者之间的透明度和信任[68]

        提议在不断发展的AI系统中,HAI可以补充这些概念,多个AI模型与人类输入合作生成建议和预测,而不是依赖单一算法。下一步是确定在研究、实践和政策中,人类和AI聊天机器人的最佳组合,然而,有必要考虑总体上的AI技术,包括广泛的监管计划。

        根据澳大利亚的AI伦理原则[70],监管可以帮助实现对所有澳大利亚人更安全、更可靠和更公平的结果;降低受AI应用影响的人员面临的负面影响的风险;并鼓励企业和政府在设计、开发和实施AI时遵循最高的道德标准。对生成式AI的后续立场表明,监管可以帮助解决有关潜在危害的担忧,如算法偏见和错误、错误信息的传播、不适当内容和深度伪造[71]。

        通过实施措施,如透明度、问责制和风险缓解策略,监管可以帮助确保AI的负责和道德使用[72]。此外,监管可以通过确保AI技术的开发和使用符合社会价值观和期望的方式,提高公众对AI技术的信任[73]。这可以帮助促进AI技术的采用,并使社会充分实现其潜在的好处。 

        AI的监管应包括定义何为“不安全”的AI,并确定哪些方面的AI应受到监管[74]。这需要全球范围内对AI技术的预期风险和收益有清晰的理解,以及对公众对AI系统的信任和接受程度的洞察。尽管西方国家的人们对AI更加谨慎,对于其利益是否超过风险的信心较低,但新兴经济体(例如巴西、印度、中国和南非)的人们更加信任和接受AI,除了年轻、受过大学教育的人以及担任管理角色的人[75]。

        过度严格的监管可能会扼杀创新,阻碍AI技术的发展[76]。因此,监管需要国际合作才能真正发挥效果。如果没有全球共识,企业可能会简单地将其AI开发活动迁移到监管较少的司法管辖区,导致监管竞赛降到最低点。有必要通过使用行业标准的安全协议来保护AI模型及其相关系统。应定期更新和修补AI模型和系统,以解决发现的任何漏洞。

        对于监管和/或促进AI应用的负责任使用的建议如下:

  • 投资研究,评估AI应用的有效性和潜在危害,并开发系统来监测和审计AI系统的异常或可疑活动。
  • 实施严格的安全措施、健全的法规和协作标准,以确保对AI技术的负责任使用。
  • 验证结合AI聊天机器人与人类专家的HAI模型,以优化心理健康护理辅助。

3.3 在AI应用中减轻偏见和歧视的影响

        世界卫生组织发出警告,表示在医疗保健领域使用生成式人工智能必须谨慎对待[77]。AI算法的优劣取决于它们训练所依赖的数据,而数据中的偏见可能导致偏见结果[78]。此外,将AI用于心理健康护理会带来重要的风险和伦理考量[79],以及安全、偏见和隐私方面的担忧,特别是涉及敏感医疗和个人数据的存储和使用[80]。

        更普遍地说,存在着对AI和自动化决策的“高风险”使用,这种情况下需要提出潜在危害的警告,包括深度伪造和算法偏见[81]。还有对AI延续或加剧偏见或狭隘观点[82,83]、自动化工作并因此在某些方面取代人类[84] 的担忧。然而,AI可以用来对抗虚假信息,并提高报道的准确性和可靠性[85,86]。挑战在于定义和决定何为“不安全”的AI。一些澳大利亚科学专家呼吁对这些“不安全”的AI实施严格的安全措施、健全的法规和标准[76]。显然,应该迅速主动地采取措施来减轻高风险AI的影响,以避免阻碍AI的进展。

        生成式人工智能正在媒体领域中用于创建更加个性化和有针对性的广告、自动化内容的创作和策划以及分析观众行为和偏好[87,88]。误导性信息或虚假信息可能源自于像ChatGPT[87]这样的工具,结合社交媒体,它们会导致合法新闻机构被大量降级,而受到垃圾信息以及虚假或具有操纵性的用户上传内容的优先。生成式AI中的偏见和错误[67,87]突显了现有信息评估准则的可疑性,因为它涉及证据的可信度、来源的透明度和限制的承认。生成式AI表明需要新的准则来促进道德、公平、隐私和透明性[76],并认可人类创作者和组织的知识产权。这可能会因为主导性技术平台(如Google和Meta)采用可能具有反竞争性的做法而恶化[88]。

        需要对AI应用进行反击和纠正,以避免持续存在偏见、骚扰、边缘化以及丧失批判性思维和独立思考能力的问题。AI聊天机器人可能是创新解决方案的一部分,可以应对检测和调节虚假新闻 [90],以及社交媒体平台透明规范化的呼声 [91–93]。举例来说,一项关于YouTube对孤独和心理健康影响的审查发现,其推荐算法可能会无意中强化现有的信念和偏见,传播误导信息和虚假信息,并且会提供无益或有害的内容 [46]。然而,审查还发现,如果用户积极参与平台并将其用作教育、社交和情感支持工具,YouTube也可能对减轻孤独、焦虑和抑郁产生积极影响。

        通过教育和研究,借助AI聊天机器人的协助,可以对存在偏见和偏见的AI应用进行反击和纠正 [94]。然而,理解研究问题的历史和背景的人类研究者/专家可能需要帮助促进和监督AI聊天机器人的解决方案。例如,YouTube的推荐算法是根据用户的观看历史记录、搜索查询和其他数据点来建议视频的 [95]。自2005年YouTube推出至2011年,其设计初衷是推荐吸引最多观看或点击次数的视频。然后,2012年,它的设计是直接响应分享、点赞,以及较少程度的踩的指标。自2016年起,其设计是增加安全性,努力删除危险内容并取消那些未遵循规定的人的收益。然而,AI聊天机器人的发展意味着通过立法和设定伦理价值来实现持续适应是至关重要的 [94],此外还要改进当前的AI系统 [46]。

        YouTube已经实施了心理健康政策、算法变更、内容管理、内容创作者和用户心理教育、心理健康和危机资源面板、自残和自杀内容警告,以及家长控制和设置 [96]。YouTube报告称,边缘内容大幅减少,因为它会立即删除检测到的冒犯性内容 [97]。然而,该算法也可能产生过滤泡和回声室,使用户接触到强化其现有信念和偏见的内容 [98]。这可能导致极化和误导信息,对心理健康产生负面影响。需要改进的算法来检测偏见和错误,并调节视频在观看列表中的呈现方式,以引导用户查看安全、信息充足且包容性强的内容,并将他们转至心理健康和危机资源面板,提供合适的信息和资源,同时还需要AI聊天机器人的协助 [46]。

        然而,澳大利亚青少年中有三分之一存在社交媒体问题使用,这种问题不仅局限于YouTube [99]。例如,在其他社交媒体平台(如Facebook、Twitter、Snapchat、Instagram、TikTok)中,网络欺凌也是一个问题 [100]。各种研究发现社交媒体使用频繁与抑郁、焦虑、孤独、自伤和自杀念头增加的风险之间有着明显的联系[101–103]。尽管对TikTok缺乏心理学研究[104],但一项在美国大学间进行的因果研究发现,接触Facebook导致重度抑郁增加7%,焦虑症增加20%[102]。考虑到Facebook于2004年进入市场后,2007年至2017年间美国10至24岁年龄段的自杀率增加了57% [105],这种导致年轻人心理健康下降的明显联系令人担忧。

        2018年,Facebook的剑桥分析公司丑闻曝光,报道了重大的数据泄露和对Facebook使用“心理战争工具”的问题 [106]。在要求按照道德、隐私和安全原则使用数据之后,澳大利亚在2021年通过了《在线安全法》成为社交媒体监管的国际领头羊,此前公开听证会揭示了Facebook的算法可能具有危害性和不安全性[107]。然而,2022年,澳大利亚政府和科技行业发现,过时的分类系统阻碍了制定新的在线内容监管法规 [108]。2023年,澳大利亚表达了对追求类似加拿大和欧盟正在起草的基于风险的AI聊天机器人分类系统的兴趣[109]。

        AI聊天机器人和其他工具的进步,如预测模型和虚拟助手,意味着可以将多个模型与人类专家意见相结合,以应对心理健康挑战和预防自杀,提高护理服务的可及性并降低求助的障碍。这些工具使用自然语言处理(NLP)和机器学习(ML)来挖掘心理健康数据,理解并响应个体的需求,并提供个性化支持。一个理论框架提出了一种适应性社交媒体虚拟伴侣(SMVC),用于教育和支持青少年学生在社交媒体环境中的互动,以实现集体福祉的一种度量[110]。这种SMVC框架是如何通过HAI设计社交媒体系统和嵌入式教育干预的示例,因为基于推荐算法的自动处理与教育者/专家的干预和指导相结合。

       HAI心理健康策略被提议用于设计和开发教育环境中的多模式负责任社交媒体系统。例如,适应性SMVC可能有助于促进获取更加平衡和多样化的内容,并减少算法推荐系统中偏见和错误的影响,例如过滤气泡和回音室。通过整合像Viable用于情感分析和DataMinr用于监控和分析社交媒体的成熟解决方案,SMVC系统可以从HAI反馈和最新数据中学习,以相应调整推荐。

        然而,AI生成的情感会影响人类对话中使用的情感语言,因此可能影响社交关系。随机实验发现,算法推荐系统会改变人们在社交中如何互动和看待彼此;如果被怀疑使用AI聊天机器人(如ChatGPT)的算法性回应,则人们会被更负面地评价[111]。因此,教育者应积极透明地鼓励使用AI聊天机器人,以避免产生负面印象。用户可能需要学会如何审慎和批判地对待AI聊天机器人提供的信息,并学会如何有效地利用这些工具来帮助解决学习中的复杂问题,并谨慎在自我保健方面使用它们以获取心理健康方面的帮助。

对抗和纠正AI应用缺陷的建议如下:

  • 对于需要更多信息的弱势群体,他们需要指导如何在AI聊天机器人的协助下自我管理心理健康,以便获取资源和治疗。
  • 社交媒体心理健康和危机资源小组可以通过链接到提供经过审查的数字心理健康和危机服务或必要转介的AI聊天机器人来增强。
  • 可以探索带有SVMC的HAI心理健康策略,小心地在更安全、更负责任的社交媒体中航行,使用人道主义、公平和可解释的系统建议。

4 结论

        这篇叙事性文献综述探讨了AI聊天机器人对社会各个方面的多方面影响,特别是关注它们在心理健康护理领域的潜力。该综述对于提供主题概述、识别文献中的空白并提出新的研究问题非常有用。通过综合理论和实证研究,本研究全面概述了AI聊天机器人在心理健康护理领域的当前状况。所呈现的证据表明,AI聊天机器人有望彻底改变心理健康支持的方式,为个人和群体提供对各种心理健康问题和目标的可及性、参与度和有效性支持。然而,必须谨慎和负责地处理它们的实施和规范化。AI聊天机器人在心理健康领域的新颖性意味着这篇叙事性文献综述展示了未来研究可以应用的理论和实证研究示例。

        AI聊天机器人的发展为服务未受到服务或未受到服务的人群提供了机会,也为对待受服务良好的人群,尤其是对于治疗常见疾病如焦虑和抑郁症提供了混合护理的机会。然而,了解哪些AI聊天机器人质量好、有用且有效是一项挑战。因此,未来研究有必要澄清这些领域以及危机支持所需的护理水平。人机交互的人类因素需要通过实证研究更加关注。AI聊天机器人提供了可及性和便利的支持,有助于解决心理健康问题求助过程中的障碍,并在各种临床试验中显示出潜力。然而,必须承认和解决诸如语义不佳、偏见以及需要改善用户体验的定性研究等局限性。AI聊天机器人应被视为人类心理健康专业人员的补充工具而非替代品。尽管如此,仍然需要更多的实证证据和为用户和从业者辩护以区分AI的质量、可用性和有效性以及其用途和受益人群。如果AI聊天机器人能够进化以提供对这些澄清领域的恰当答案,那么这些工具的更自主的使用将逐渐成为可能。

        此外,鉴于存在偏见、隐私问题和误导信息放大的潜在可能性,对AI应用进行规范和负责任的使用是必要的。这强调了在建立标准和规定以确保AI技术的道德和透明使用方面的重要性需要国际合作。在创新和规范之间需要谨慎地取得平衡,以避免扼杀进展的同时防范潜在危害。

        而且,该综述突出了合作型AI在对抗AI应用中的偏见和错误方面的作用,特别是在社交媒体和心理健康支持的背景下。通过将人类专业知识和情感分析融入AI模型,可以提供更加平衡和多样化的内容,同时减少算法偏见的影响。

        总的来说,该综述显示了在心理健康护理中使用AI聊天机器人的前景,但也突出了进一步研究的需求,例如范围评估,以评估它们的有效性并解决偏见和道德问题的风险。它强调了在利用AI聊天机器人潜力方面需要谨慎考虑、研究和合作的必要性。虽然它们在各个领域提供了变革性的可能性,但负责任的发展、规范和持续评估对于最大化它们的利益并最小化风险至关重要。技术开发者、心理健康专业人员、政策制定者、研究人员和教育工作者之间的合作努力可以帮助确保AI聊天机器人对社会的福祉和心理健康支持做出积极贡献。

原文 AI Chatbots in Digital Mental Health

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值