NOIP2013货车运输

题目描述 Description

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入描述 Input Description

第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道路。
接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。

输出描述 Output Description

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。

样例输入 Sample Input

4 3 
1 2 4 
2 3 3 
3 1 1 
3
1 3 
1 4 
1 3

样例输出 Sample Output

3
-1
3

数据范围及提示 Data Size & Hint

对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q < 1,000; 
对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q < 1,000; 
对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q < 30,000,0 ≤ z ≤ 100,000。


题解:最大生成树+倍增lca

  性质:两个点之间最小路径的最大值一定在最大生成树上

 1.kruscal求出最大生成树

 2.dfs求出每个点的深度,和p[i][0]表示i这个点的父亲

3.lca:预处理f[i][j],表示i这个点向上跳2^j步会跳到哪个点,一遍维护minv[i][j]表示这一路的路径的最小值

4.询问在线处理。<1>从小到大枚举i,用试探法让x,y到达同一深度。

                            <2>一起向上跳,会超过目标深度就不跳,没有超过lca就跳,

                                             最后会停在差一步到lca的地方!再跳一部到lca~!

                            注意在维护限重的时候要先维护,再跳点。

#include<iostream>
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn=10005;
int flag,f[maxn],num,q,head[maxn],p[maxn][15],minv[maxn][15],deep[maxn],n,m,a,b,ans;
bool vis[maxn];
char ch;
struct edge{
	int f,t,w;
}e[50005];
struct ed{
	int to,next,w;
}v[maxn*2];
inline int get_num(){
	ch=getchar();
	flag=1,num=0;
	while(ch<'0'||ch>'9'){if(ch=='-')flag=-1;ch=getchar();	}
	while(ch>='0'&&ch<='9'){num=(num<<3)+(num<<1)+ch-'0';ch=getchar();}
	return flag*num;
}
int find(int x){
	if(f[x]==x)return f[x];
	f[x]=find(f[x]);
	return f[x];
}
bool cmp (struct edge x,struct edge y){
	return x.w>y.w;
}
void kruscal(){
	for(int i=1;i<=n;i++)f[i]=i;
	sort(e+1,e+1+m,cmp);
//	for(int i=1;i<=m;i++)printf("排序%d  %d,%d\n",i,e[i].f,e[i].t);
	int f1,f2,count=0;
	for(int i=1;i<=m;i++){
		f1=find(e[i].f),f2=find(e[i].t);


		if(f1!=f2){
//			printf("建边:%d  %d\n",e[i].f,e[i].t);
			f[f1]=f2;
			v[++count].to=e[i].t; v[count].w=e[i].w; v[count].next=head[e[i].f]; head[e[i].f]=count;
			v[++count].to=e[i].f; v[count].w=e[i].w; v[count].next=head[e[i].t]; head[e[i].t]=count;
		}
	}
}
void dfs(int now){
	for(int i=head[now];i>0;i=v[i].next){
		if(v[i].to!=p[now][0]){
			vis[v[i].to]=true;
			deep[v[i].to]=deep[now]+1;
			p[v[i].to][0]=now;
			minv[v[i].to][0]=v[i].w;
			dfs(v[i].to);
		}
	}
}
void lca(){
	for(int i=1;i<=n;i++)if(!vis[i]){
		deep[i]=1;
		vis[i]=true;
		dfs(i);
	}
//	for(int i=1;i<=n;i++)printf("%d ",deep[i]);cout<<endl;
//for(int i=1;i<=n;i++)printf("父亲%d  路径 %d\n",p[i][0],minv[i][0]);
	for(int j=1;(1<<j)<=n;j++)
	  for(int i=1;i<=n;i++)
	   if(deep[i]-(1<<j)>0){
	   	p[i][j]=p[p[i][j-1]][j-1];
	   	minv[i][j]=min(minv[i][j-1],minv[p[i][j-1]][j-1]);
//   	printf("更新%d %d 为%d\n",i,j,minv[i][j]);
	   }     
}
int query(int x,int y){
	if(find(x)!=find(y))return -1;
	
	if(deep[x]>deep[y])swap(x,y);
	ans=minv[y][0];//printf("更新ans   %d\n",ans);
//	cout<<minv[3][1]<<endl;
	for(int i=14;i>=0;i--)
	 if(deep[y]-(1<<i)>0&&deep[p[y][i]]>=deep[x]){
	 	ans=min(ans,minv[y][i]);
	 	y=p[y][i];
//	 	printf("%d 更新ans   %d\n",i,ans);
	 }
	 
	if(x==y)return ans;
	for(int i=14;i>=0;i--)
	  if(deep[y]-(1<<i)>0&&p[y][i]!=p[x][i]){
	  	ans=min(ans,minv[y][i]);//一定要先更新完再更改点! 
		ans=min(ans,minv[x][i]);
	  	y=p[y][i],x=p[x][i];
	  }
	
	ans=min(ans,minv[x][0]);
	ans=min(ans,minv[y][0]);
	return ans;
}
int main(){
	memset(head,-1,sizeof(head));
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++){
		e[i].f=get_num();e[i].t=get_num();e[i].w=get_num();
	}
	kruscal();
	lca();
	
	scanf("%d",&q);int ans1;
	for(int r=1;r<=q;r++){
		a=get_num();b=get_num();
		ans1=query(a,b);
		printf("%d\n",ans1);
	}
	return 0; 
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值