A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道路。
接下来 m 行每行 3 个整数 x、y、z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意:x 不等于 y,两座城市之间可能有多条道路。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y。
输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出-1。
4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
3
-1
3
对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q < 1,000;
对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q < 1,000;
对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q < 30,000,0 ≤ z ≤ 100,000。
题解:最大生成树+倍增lca
性质:两个点之间最小路径的最大值一定在最大生成树上
1.kruscal求出最大生成树
2.dfs求出每个点的深度,和p[i][0]表示i这个点的父亲
3.lca:预处理f[i][j],表示i这个点向上跳2^j步会跳到哪个点,一遍维护minv[i][j]表示这一路的路径的最小值
4.询问在线处理。<1>从小到大枚举i,用试探法让x,y到达同一深度。
<2>一起向上跳,会超过目标深度就不跳,没有超过lca就跳,
最后会停在差一步到lca的地方!再跳一部到lca~!
注意在维护限重的时候要先维护,再跳点。
#include<iostream>
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn=10005;
int flag,f[maxn],num,q,head[maxn],p[maxn][15],minv[maxn][15],deep[maxn],n,m,a,b,ans;
bool vis[maxn];
char ch;
struct edge{
int f,t,w;
}e[50005];
struct ed{
int to,next,w;
}v[maxn*2];
inline int get_num(){
ch=getchar();
flag=1,num=0;
while(ch<'0'||ch>'9'){if(ch=='-')flag=-1;ch=getchar(); }
while(ch>='0'&&ch<='9'){num=(num<<3)+(num<<1)+ch-'0';ch=getchar();}
return flag*num;
}
int find(int x){
if(f[x]==x)return f[x];
f[x]=find(f[x]);
return f[x];
}
bool cmp (struct edge x,struct edge y){
return x.w>y.w;
}
void kruscal(){
for(int i=1;i<=n;i++)f[i]=i;
sort(e+1,e+1+m,cmp);
// for(int i=1;i<=m;i++)printf("排序%d %d,%d\n",i,e[i].f,e[i].t);
int f1,f2,count=0;
for(int i=1;i<=m;i++){
f1=find(e[i].f),f2=find(e[i].t);
if(f1!=f2){
// printf("建边:%d %d\n",e[i].f,e[i].t);
f[f1]=f2;
v[++count].to=e[i].t; v[count].w=e[i].w; v[count].next=head[e[i].f]; head[e[i].f]=count;
v[++count].to=e[i].f; v[count].w=e[i].w; v[count].next=head[e[i].t]; head[e[i].t]=count;
}
}
}
void dfs(int now){
for(int i=head[now];i>0;i=v[i].next){
if(v[i].to!=p[now][0]){
vis[v[i].to]=true;
deep[v[i].to]=deep[now]+1;
p[v[i].to][0]=now;
minv[v[i].to][0]=v[i].w;
dfs(v[i].to);
}
}
}
void lca(){
for(int i=1;i<=n;i++)if(!vis[i]){
deep[i]=1;
vis[i]=true;
dfs(i);
}
// for(int i=1;i<=n;i++)printf("%d ",deep[i]);cout<<endl;
//for(int i=1;i<=n;i++)printf("父亲%d 路径 %d\n",p[i][0],minv[i][0]);
for(int j=1;(1<<j)<=n;j++)
for(int i=1;i<=n;i++)
if(deep[i]-(1<<j)>0){
p[i][j]=p[p[i][j-1]][j-1];
minv[i][j]=min(minv[i][j-1],minv[p[i][j-1]][j-1]);
// printf("更新%d %d 为%d\n",i,j,minv[i][j]);
}
}
int query(int x,int y){
if(find(x)!=find(y))return -1;
if(deep[x]>deep[y])swap(x,y);
ans=minv[y][0];//printf("更新ans %d\n",ans);
// cout<<minv[3][1]<<endl;
for(int i=14;i>=0;i--)
if(deep[y]-(1<<i)>0&&deep[p[y][i]]>=deep[x]){
ans=min(ans,minv[y][i]);
y=p[y][i];
// printf("%d 更新ans %d\n",i,ans);
}
if(x==y)return ans;
for(int i=14;i>=0;i--)
if(deep[y]-(1<<i)>0&&p[y][i]!=p[x][i]){
ans=min(ans,minv[y][i]);//一定要先更新完再更改点!
ans=min(ans,minv[x][i]);
y=p[y][i],x=p[x][i];
}
ans=min(ans,minv[x][0]);
ans=min(ans,minv[y][0]);
return ans;
}
int main(){
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
e[i].f=get_num();e[i].t=get_num();e[i].w=get_num();
}
kruscal();
lca();
scanf("%d",&q);int ans1;
for(int r=1;r<=q;r++){
a=get_num();b=get_num();
ans1=query(a,b);
printf("%d\n",ans1);
}
return 0;
}