文章有点长,请耐心观看,相信会对你有所帮助
最近我们公司的数据分析产品上了AI功能了。
以前做数据分析,门槛还是比较高的,至少要学习两天才能熟练使用工具,还要学习数据分析思维、统计学和SQL知识,一个数据分析新手完整的学习周期可能要半年左右。
我们的新产品已集成AI功能,在给客户演示时,客户确实非常惊喜,因为它极大简化了数据分析流程。这种体验的飞跃,就像我第一次使用AI生成PPT时的感受一样。
我曾负责公司的企业培训业务,组建过讲师团队。我感觉讲师可能要面临失业的风险,因为这个工具已经足够简单易用,不需要学习功能和各种公式,
只要知道自己的分析需求,并学会提问,任何人都可以上手。
这大大降低了数据分析的学习门槛。除了熟练使用工具外,其他如分析思维和SQL,也只需要通过提问获取帮助。
此外,数据分析的效率也将大幅提升,以前制作一个报告可能要2天,现在半天就够了。
未来,可能会有AI数据分析agent,帮助自动清理、处理数据,生成报告,甚至分析业务问题并提出建议,这将是一项革命性的进步,因为机器的信息处理速度远超过人类。
可能很多数据分析师都会面临失业,因为不需要那么多人了。
但是换个视角来看,使用门槛降低后,确实人人都可成为数据分析师,这也引发我的思考:
既然人人都是数据分析师,现在画图和写文章的门槛也很低,那是否意味着掌握AI后,人人都可成为全能选手,专业分工的逻辑会被重构?
这就涉及专业分工的概念,为什么会有专业分工?
因为专业人士能最好地完成专业工作,达到最好的效果,专业的人做专业的事,已经是全社会的共识。
但专业分工也存在一些问题,我认为最大的问题是带来了部门间的沟通成本过高!
不同部门的专业语言不同,难以高效沟通!
以我熟悉的业务要求IT开发数据分析看板为例,就涉及业务逻辑、数据逻辑、指标细节等多方面沟通,非常低效。
比如拉了一个会议,5个人开2小时的会来沟通需求,就是10小时的成本,翻了五倍,而且这还不算后续的开发时间,开发后再沟通的时间。
光需求沟通就多了10小时的成本,在一个科技企业,一个人的时薪通常会在50-100元左右,那么一个需求的额外成本就是500-1000元,而企业可是有成千上万类似的会议沟通,这对企业来说浪费是非常巨大的。
那么,既然浪费这么大,在之前取消专业分工可行吗?
之前还真的不可行,主要有两个原因:
-
1. 学习成本太高,学一个技能达到工作要求,可能至少半年,这比沟通成本可大多了。
-
2. 就算一个人可以学好多,但是精力分散,也没法输出高质量的交付物。
所以即便存在沟通成本,我们也不得不继续专业分工,因为这是最优的方案。
但AI目前很好地解决了上述两个痛点:
-
1. 学习成本大幅降低,遇到不懂的可以随时提问;
-
2. 只要掌握提问技巧,AI完成的工作质量不输专业人士,而且可以解放我们的时间去做更高价值的事情。
所以一个人真的掌握了AI,并且本身有很强的学习能力,确实是可以不用分工,能够低成本,高质量完成一个团队的任务。
可能有些人会觉得我说的就是凭空想象,但昨天听了李桢老师分享AIGC企业落地案例的时候,他就说了他自己企业的真实案例,因为全员AI转型,他裁了一大波人,且业务也有了很大的提效。
主持人问他为什么能做到:他说因为他做的不是单点单部门的优化,而做的是整个公司全局的优化,这是打破了部门墙的。
比如一个销售人员,觉得设计师画图太慢,就直接用Midjourney自己画图,把设计师的活抢过来,这不仅不需要设计师了,还节省了很大的沟通成本,所以整体效率上优化是全局性的提升!
所以,我隐约感觉到,专业壁垒和分工逻辑将会逐渐瓦解,个人将能以更低成本、更高效率完成更广泛的工作,也就说一个人能够点的技能点,从最高10个,到了最高100个,甚至可能更多。
比如我现在用AI来做课程开发、做我的盖洛普教练、策划方案、做我的翻译、做文章配图、写标题、写文案、润色文章、甚至在做我的个人成长教练,这些我都不需要专业分工了,有了GPT,再加上学习能力,我都能搞定。
所以面向未来,我觉得对于个人来说,想要有更强的竞争力,需要做好以下的三件事。
-
(1)掌握AI工具和提问技巧。毋庸置疑,你要学会与AI协同工作,也就是学会提问。可能现在最基础的就是通用提示词。到明年,就是业务+提示词,比如怎么描述数据分析的需求,怎么写一个策划书等各个领域专业的提问方式。
-
(2)提高业务审美能力。最近学了个新词,觉得很适用:审美。你得知道什么是好的,什么是坏的。掌握AI能力,还不够,AI出来的东西你不可能直接用,还是得经过人类的审核,好的才能通过,所以业务审美很重要。得积累更多优秀的案例,且这种对业务的审美将会变成是未来真正的核心竞争力,也是无法被轻易替代的!
-
(3)打破专业边界,做全能选手。不要觉得我是销售,其他的事我就不管了,我是运营,我就不应该管产品的事。未来很有可能就是几个职业,比如产品研发测试融合成一个新的职业,假设叫做大产品经理,接到需求就直接自己开发,开发完用AI测试一下,就可以完成交付了。
能做到这些,其实就是超级个体了,由超级个体组成的企业,那就是超级组织了,10几个人就可以发挥出100个人的战斗力!
这就是我最近的一些新的思考,因为本身我就是在大数据行业,提供的也是信息服务,以上的推理可能也仅仅局限于一些信息技术产业。
写在最后
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。