实验平台
Ubuntu 16.04 docker
安装opencv
build
cd <ncnn-root-dir>
mkdir -p build
cd build
cmake ../
make -j32
完全编译
在主CMakeLists.txt 文件中注释去掉
# add_subdirectory(examples)
# add_subdirectory(benchmark)
add_subdirectory(examples)
add_subdirectory(benchmark)
完全编译可以运行例子程序。
下面以mobilenet_ssd为例:
下载模型:
mobilenet_ssd 下载地址
准备图片:
运行结果:
测试时间:
./examples/mobilenetssd ../test_imgs/111.png
ttrack: 0.092464
15 = 0.99992 at 204.66 26.58 238.24 x 529.39
测试时间92ms, cpp的运行时间, 与ssd300的gpu运行时间相当.
遇到问题:
#error This file requires compiler and library support for the ISO C++ 2011 standard. This support must be enabled with the -std=c++11 or -std=gnu++11 compiler options.
在主工程的 CMakeLists.txt中, 添加
改变并添加:
if(NCNN_OPENMP)
find_package(OpenMP)
if(OpenMP_CXX_FOUND OR OPENMP_FOUND)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS} ")
endif()
endif()
为:
if(NCNN_OPENMP)
find_package(OpenMP)
if(OpenMP_CXX_FOUND OR OPENMP_FOUND)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS} -std=c++14 -O3")
endif()
endif()
编译运行即可.
完整代码:
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include <stdio.h>
#include <vector>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <chrono>
// #include <thread>
#include "net.h"
// using namespace std;
struct Object
{
cv::Rect_<float> rect;
int label;
float prob;
};
static int detect_mobilenet(const cv::Mat &bgr, std::vector<Object> &objects)
{
ncnn::Net mobilenet;
// model is converted from https://github.com/chuanqi305/MobileNet-SSD
// and can be downloaded from https://drive.google.com/open?id=0ByaKLD9QaPtucWk0Y0dha1VVY0U
mobilenet.load_param("mobilenet_ssd_voc_ncnn.param");
mobilenet.load_model("mobilenet_ssd_voc_ncnn.bin");
const int target_size = 300;
int img_w = bgr.cols;
int img_h = bgr.rows;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, target_size, target_size);
const float mean_vals[3] = {127.5f, 127.5f, 127.5f};
const float norm_vals[3] = {1.0 / 127.5, 1.0 / 127.5, 1.0 / 127.5};
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = mobilenet.create_extractor();
// ex.set_num_threads(4);
ex.input("data", in);
ncnn::Mat out;
ex.extract("detection_out", out);
// printf("%d %d %d\n", out.w, out.h, out.c);
objects.clear();
for (int i = 0; i < out.h; i++)
{
const float *values = out.row(i);
Object object;
object.label = values[0];
object.prob = values[1];
object.rect.x = values[2] * img_w;
object.rect.y = values[3] * img_h;
object.rect.width = values[4] * img_w - object.rect.x;
object.rect.height = values[5] * img_h - object.rect.y;
objects.push_back(object);
}
return 0;
}
static void draw_objects(const cv::Mat &bgr, const std::vector<Object> &objects)
{
static const char *class_names[] = {"background",
"aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"};
cv::Mat image = bgr.clone();
for (size_t i = 0; i < objects.size(); i++)
{
const Object &obj = objects[i];
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));
char text[256];
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
int x = obj.rect.x;
int y = obj.rect.y - label_size.height - baseLine;
if (y < 0)
y = 0;
if (x + label_size.width > image.cols)
x = image.cols - label_size.width;
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
cv::Scalar(0, 0, 255), CV_FILLED);
cv::putText(image, text, cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
// cv::imshow("image", image);
// cv::waitKey(0);
cv::imwrite("image.png", image);
}
int main(int argc, char **argv)
{
if (argc != 2)
{
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
return -1;
}
const char *imagepath = argv[1];
cv::Mat m = cv::imread(imagepath, CV_LOAD_IMAGE_COLOR);
if (m.empty())
{
fprintf(stderr, "cv::imread %s failed\n", imagepath);
return -1;
}
std::chrono::steady_clock::time_point t1 = std::chrono::steady_clock::now();
std::vector<Object> objects;
detect_mobilenet(m, objects);
std::chrono::steady_clock::time_point t2 = std::chrono::steady_clock::now();
double ttrack = std::chrono::duration_cast<std::chrono::duration<double>>(t2 - t1).count();
fprintf(stdout, "ttrack: %f \n", ttrack);
draw_objects(m, objects);
return 0;
}