为《信息学奥赛一本通》平反(除了OJ很差和代码用宋体)

本书虽然存在一些不足之处,如代码字体选择不当,但其动态规划等内容讲解详尽,附带大量例题和推导,对于理解算法有一定帮助。作者亦提供了在线评测系统供读者实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  我看见网上很多人都在说一本通这本书很不好,建议不要买,但是我在看到之前就已经买了。我是再老师的推荐下买的,也不是为了看C++入门,就是看后面的算法部分。我通过这本书看懂了很多,也做出了很多题,自以为大有益。

  比如动态规划那里,讲的也很详细,先讲多阶段决策过程的最优化问题,再讲动态规划的基本概念和基本模型构成,继续讲最优化原理和无后效性原则,最后将基本动态规划模型的应用。里面也有很多的推导过程,虽乍一看很难懂,但是仔细的钻研,用笔做草稿,还是能够看懂。附带的例题也很多。

  很多人说这本书是作者抄出来的,但是我并不觉得,即使是抄了,那你也看懂了,就不重要了。我觉得看一本书重要的是看懂,尤其是计算机类的书,抄不抄不重要了。比如你看看这CSDN,转载的并不少,但是转载和原创只要不妨碍你看,对你有帮助,那处理版权可以滞后。

  这本书的缺点也有的,比如代码竟然用宋体!这人简直是脑子有泡,别人代码都用Consolas或者Courier New。宋体的代码看着我都要吐了。还好他的光盘里有PPT,其中有配套代码。

  人家也有良心,给咱们做了一个OJ——http://ybt.ssoier.cn:8088/,人家服务器小,就体谅体谅,大不了去洛谷嘛,不要起劲说人家。至少还给做了一个团队,在团队里面就可以无限制刷题了,等个40秒不致命!人家都说了就什么成都石室中学、福建长乐一中帮他们做。

  最后我说一下,我不是为了推销这本书,我是说,这本书也不是没有用的。其实我也并不是很喜欢这本书,我现在看的是《算法竞赛从入门到进阶》、《数据结构》和《数据结构与算法分析》。一本通和这些比起来那就简直差远了,我只是在这里给一本通平反一下罢了。

在这里插入图片描述
(本文仅为个人意见)

### 解决方案 以下是基于 Floyd 算法信息学奥赛一本 OJ 平台 1421 题的 C++ 实现代码。此代码实现了多源最短路径问题,能够正确处理带权重的有向图中的顶点间距离计算。 #### Floyd 算法核心逻辑 Floyd 算法过动态更新邻接矩阵的方式找到任意两点之间的最短路径。其时间复杂度为 \(O(n^3)\),适用于较小规模的数据集[^2]。 ```cpp #include <iostream> #include <climits> // 使用 INT_MAX 表示无穷大 using namespace std; const int MAXN = 105; // 假设节点数量不超过 100 int dist[MAXN][MAXN]; // 邻接矩阵存储每一对节点的距离 void floyd(int n) { for (int k = 1; k <= n; ++k) { // 中介点 for (int i = 1; i <= n; ++i) { // 起始点 for (int j = 1; j <= n; ++j) { // 终点 if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX && dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; } } } } } int main() { int n, m; cin >> n >> m; // 输入节点数边的数量 // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; // 自己到自己的距离为 0 else dist[i][j] = INT_MAX; // 初始状态表示不可达 } } // 输入边及其权重 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; // 边 (u,v) 的权重为 w dist[u][v] = min(dist[u][v], w); // 可能存在重边,取最小值 } // 执行 Floyd 算法 floyd(n); // 输出结果 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (dist[i][j] == INT_MAX) cout << "INF "; // 不可达的情况输出 INF else cout << dist[i][j] << ' '; } cout << endl; } return 0; } ``` 上述代码中,`floyd` 函数负责执行三重循环的核心部分,逐步更新 `dist` 数组以记录当前已知的最短路径长度。输入阶段需注意初始化以及可能存在的重复边情况。 --- ### 注意事项 - **数组初始化**:在使用前务必对二维数组进行初始化,防止未定义行为的发生。 - **边界条件**:当某些节点之间不存在路径时,应将其标记为 `INT_MAX` 或其他特殊值来表示不可达。 - **性能优化**:对于大规模数据,建议考虑更高效的单源或多源最短路径算法(如 Dijkstra 或 SPFA),尽管它们的应用场景有所不同[^1]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值