多校第三场——hdu4631——离线

题意:询问一个序列的某一个子区间中的最大的gcd的值。

这题关键一点是把最大的gcd转换为最大出现过多次的约数,这样就可以转化为一个求区间最大值的问题了。

我从后往前扫一遍原序列,同时记录每一个约数出现的最靠左的位置。每次处理序列中的一个数时,对这个数所有的约数,找到该约数出现的最靠左的位置,并在树状数组中更新该位置的值。在我们处理序列的第i的元素的时候,对于起始位置在i的询问,我们只要求出树状数组[0, r]区间的最大值就可以了。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;

const int maxn = 50000 + 10;
int num[maxn], n;
int hash[maxn];
int c[maxn];
int ans[maxn], nq;
struct query
{
    int l, r, ord;
    bool operator < (const query & rhs) const { return l > rhs.l; }
}q[maxn];

inline int lowbit(int t) { return t & (-t); }
inline void add(int pos, int t) { while(pos <= n) { c[pos] = max(c[pos], t); pos += lowbit(pos); } }
inline int sum(int pos) { int s = 0; while(pos > 0) { s = max(s, c[pos]); pos -= lowbit(pos); } return s; }

void prework()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; ++i) c[i] = 1;
    memset(hash, 0, sizeof(hash));
    for(int i = 1; i <= n; ++i) scanf("%d", num + i);
    scanf("%d", &nq);
    for(int i = 1; i <= nq; ++i)
    {
        scanf("%d %d", &q[i].l, &q[i].r);
        q[i].ord = i;
    }
    sort(q + 1, q + nq + 1);
}

void solve()
{
    int c = 1;
    for(int i = n; i > 0; --i)
    {
        for(int j = 1; j * j <= num[i]; ++j)
        {
            if(num[i] % j == 0)
            {
                if(hash[j] != 0) add(hash[j], j);
                hash[j] = i;
                if(j * j != num[i])
                {
                    int tmp = num[i] / j;
                    if(hash[tmp] != 0) add(hash[tmp], tmp);
                    hash[tmp] = i;
                }
            }
        }
        while(q[c].l == i)
        {
            ans[q[c].ord] = sum(q[c].r);
            if(q[c].l == q[c].r) ans[q[c].ord] = 0;
            c++;
        }
    }
    for(int i = 1; i <= nq; ++i) printf("%d\n", ans[i]);
}


int main()
{
    freopen("in.txt", "r", stdin);
    int t; cin >> t;
    while(t--)
    {
        prework();
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值