最长上升子序列(进阶版)

给一个k,求任意两个数字的差!=k的数字最多多少个。
例:k=1,1 1 1 1 2 3 4 4 4 4 则=8;
就是一个最长上升子序列的改版:把后一个大约前一个的判断改成了差值!=k;

#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;

int main()
{
    int n,a[1010],b[1010],k;
    cin>>k;
    memset(b,0,sizeof(b));
    cin>>n;
    for(int i=0;i<n;i++) cin>>a[i];
    for(int i=0;i<n;i++)
    {
        b[i]=1;
        for(int j=0;j<i;j++)
        {
            if(a[i]-a[j]!=k) b[i]=max(b[i],b[j]+1);
        }
    }
    int ans=-1;
    for(int i=0;i<n;i++)
    {
        if(ans<b[i]) ans=b[i];
    `

    cout<<ans<<endl;
}

注意!dp问题就是:该状态=上一个状态或者是一个比较的状态:

if(a[i]-a[j]!=k) b[i]=max(b[i],b[j]+1);
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值