自适应滤波中的期望信号

-
去相关可能是一个非常直观的角度。假定输入的是一个被白噪声污染的信号x(n)=s(n)+v(n),其中s(n)代表信号,v(n)代表噪声。期望信号是d(n)。y(n)表示x(n)通过维纳滤波器之后的输出。按照维纳滤波器误差能量最小的准则,即E[(y-d)2]最小。也就是说y(n)与d(n)相关性最强的情况下,误差能量最小。这时候即把误差能量准则转化为两个信号的相关性的问题了。我们知道,一般来说噪声与信号是不相关的的,噪声通过一个线性系统h(n)之后和信号也是不相关的。因此,为了使得y(n)与d(n)相关性最强,只能希望s(n)通过h(n)这个线性系统的输出与d(n)完全相关。这时候我们就很好理解,如果s(n)有和d(n)不相关的部分,那么这部分即便是通过一个线性系统之后,也仍然和d(n)不相关,这部分信号必定会反应在误差信号中。这也就是说,s(n)中只有和d(n)相关的部分才能对消掉。正是从这个意义上说,维纳滤波实际上就是一个去相关的过程。这在直观上很好理解,对于输入信号x(n)和期望输出d(n),能对消的只有x(n)中与d(n)相关的部分,误差就是不相关的那部分。这也就是“不是一家人,不进一家门”吧。不相关的,无论是怎么变换,还是“形同陌路”。
 
期望信号与具体的应用场合有关。比如在胎儿的心音检测中。输入信号x(n)=sm(n)+sb(n),其中sm为孕妇的心音信号,sb为胎儿的心音信号。此时自适应滤波器要输出的是胎儿的心音信号sb(n)。因此此时可以将x(n)看做是期望输出信号,sm为输入信号,这样,通过自适应滤波器之后就得到实际需要的sb(n)了。x(n)可以通过放置在胎儿位置的传感器得到,sm可以通过放置在远离胎儿的位置的传感器得到。
 
实际上,基于维纳滤波的问题都涉及到期望信号的理解。很多人往往会问,要是知道了期望输出信号,还需要滤波做什么呢?实际上不完全是这么回事的。如果从去相关的角度,就非常好理解期望信号的问题了。
 
-
### LMS自适应滤波期望信号的作用与实现 #### 1. 期望信号的概念及其作用 在LMS(最小均方)自适应滤波器中,期望信号 \( d(n) \) 是指理想情况下应该得到的输出信号。该信号作为参考标准,用于衡量当前滤波器输出 \( y(n) \) 的准确性,并计算两者之间的误差 \( e(n) = d(n) - y(n) \)[^2]。此误差被用来更新滤波器的权值向量 \( w(n) \),从而逐步优化滤波效果。 具体来说,\( d(n) \) 起到了指导滤波器学习过程的关键作用。如果 \( d(n) \) 设计得当,则可以有效引导滤波器收敛至最优状态;反之,不恰当的选择可能导致滤波失败或者性能下降。 #### 2. 期望信号的设计原则 设计合适的期望信号取决于实际的应用场景。以下是几种常见情况下的期望信号设定方式: - **噪声消除**:在这种情形下,输入信号可能混杂有不需要的声音成分。此时可将纯净版本的目标语音设为期望信号 \( d(n) \),以便让算法学会区分并去除干扰项[^4]。 - **系统辨识**:假设存在未知线性动态系统需建模描述。那么可以通过已知激励序列加上相应响应数据共同构成训练样本集,其中后者即充当了期望输出的角色。 - **回声抵消**:对于电话通信中的双工模式而言,远端讲话者发出的声音经由本地扩音设备播放出来之后再传入麦克风形成近似延迟复制版的新音频流——这就是所谓的“回声”。为了改善用户体验质量,在这种环境下可以把不含任何附加效应的真实用户发声当作理想的预期形态来对待。 #### 3. MATLAB 实现示例 下面给出一段简单的MATLAB代码片段演示基于LMS算法执行基本功能的过程,其中包括初始化参数设置、迭代运算逻辑以及最终可视化展示等内容。 ```matlab % 参数配置 N = 10; % 滤波器阶数 mu = 0.01; % 步长因子 iterations = 1000; % 初始化变量 w = zeros(N, 1); % 权重向量 x = randn(iterations, N); % 输入信号矩阵 d = sin(0.1 * (1:iterations))'; % 期望信号 e = zeros(size(d)); % 错误信号数组预分配空间大小相同于d for k = 1:iterations % 计算输出y(k)=sum(w(i)*x(k-i)) y = sum(w .* x(k,:)); % 更新错误信号e(k)=d(k)-y(k) e(k) = d(k) - y; % 使用梯度下降法调整权重w=w+mu*e*x' w = w + mu * e(k) * x(k,:)'; end figure; plot(e); title('Error Signal Over Time'); xlabel('Iteration Number'); ylabel('Amplitude'); figure; stem(w,'filled'); title('Final Weights of the Adaptive Filter'); xlabel('Weight Index'); ylabel('Magnitude'); ``` 上述脚本模拟了一个正弦波形式的理想目标函数作为我们的期望输出,并随机生成了一些高斯白噪音串作测试素材喂给整个流程运行一遍看看结果如何变化趋势图样貌怎样最后还画出了结束时刻各位置对应的系数数值分布状况供进一步分析探讨之用[^1]。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值