引言
本篇是排序算法的第七篇,计数排序。
1、算法步骤
1、将待排序的数组里的值,作为新数组中的下标;
2、新数组下标中对应的值重复的计数累加;
3、最后新数组中下标有值的依次放到数组中(下标本身已经排好序了)。
2、时间复杂度
平均时间复杂度O(n + k)
3、算法实现
public class CountSort {
public static void main(String[] args) {
int[] numbers = {12,2,24,30,6,16};
int[] result = CountSort.sort(numbers);
StringBuffer stringBuffer = new StringBuffer();
for (int i = 0; i < result.length; i++) {
stringBuffer.append(result[i] + " ");
}
System.out.println(stringBuffer.toString());
}
public static int[] sort(int[] number){
//重新copy一个新数组,不影响参数
int[] arg = Arrays.copyOf(number, number.length);
//获取最大数组下标
int maxValue = getMaxValue(arg);
return counting(maxValue,arg);
}
public static int[] counting(int max,int[] arg){
//初始化一个新数组
int[] newArray = new int[max + 1];
//统计下标值次数
for (int value : arg){
newArray[value]++;
}
int index = 0;
for (int i = 0; i < newArray.length; i++) {
while (newArray[i] > 0){
//下标是顺序的,有值,则放入之前的数组
arg[index++] = i;
//计数相应的减少1
newArray[i]--;
}
}
return arg;
}
public static int getMaxValue(int[] arg){
int maxValue = arg[0];
for (int i = 1; i < arg.length; i++) {
if(maxValue < arg[i]){
maxValue = arg[i];
}
}
return maxValue;
}
}
结束语
计数算法对空间要求度高,排序中如果数据量小,有数据值特别大,那对空间是极大的浪费。