EOJ 3346 皇后问题

题目描述

八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。

八皇后问题可以推广为更一般的 n 皇后摆放问题:这时棋盘的大小变为 n×n,而皇后个数也变成 n。

现在给你 n 个皇后的位置座标,问总共有多少对皇后互相冲突。

输入格式

第一行一个整数 n,表示有 n 个皇后。

接下来 n 行,每行两个整数 x,y (1≤x,y≤n),中间用空格分开,表示 n 个皇后的坐标。

数据保证不会有两个皇后在同一个地方。

数据规模约定:

  • 对于 60% 的数据,1≤n≤100。
  • 对于 100% 的数据,1≤n≤10^{5}

输出格式

输出一个整数,表示有多少对皇后互相冲突。

样例

input

3
1 1
1 2
1 3

output

3

input

2
1 1
2 2

output

1

input

4
1 3
2 1
3 4
4 2

output

0

 思路:用四个数组分别记录每行、每列以及两条对角线上的皇后个数,然后遍历这四个数组根据组合数公式求出两两组合的个数,并求和。注意数组开成long long,否则求组合数的过程中临时变量的结果会溢出。代码如下

#include <iostream>

using namespace std;


int main()
{
    int n, x, y, i;
    long long ans=0;
    cin>>n;
    long long *row = new long long[n](), *col = new long long[n](), *m_diag = new long long[2*n-1](), *c_diag = new long long[2*n-1]();
    for(i=0; i<n; ++i){
        cin>>x>>y;
        ++row[x-1];
        ++col[y-1];
        ++m_diag[y-x+n-1];
        ++c_diag[x+y-2];
    }
    for(i=0; i<2*n-1; ++i){
        if(i<n){
            long long &r = row[i], &c = col[i];
            if(r > 0)
                ans += r*(r-1)/2;
            if(c > 0)
                ans += c*(c-1)/2;
        }
        long long &m_d = m_diag[i], &c_d = c_diag[i];
        if(m_d > 0)
            ans += m_d*(m_d-1)/2;
        if(c_d > 0)
            ans += c_d*(c_d-1)/2;
    }
    cout<<ans;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值