题目描述
八皇后问题是一个以国际象棋为背景的问题:如何能够在 8×8 的国际象棋棋盘上放置八个皇后,使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行、纵行或斜线上。
八皇后问题可以推广为更一般的 n 皇后摆放问题:这时棋盘的大小变为 n×n,而皇后个数也变成 n。
现在给你 n 个皇后的位置座标,问总共有多少对皇后互相冲突。
输入格式
第一行一个整数 n,表示有 n 个皇后。
接下来 n 行,每行两个整数 x,y (1≤x,y≤n),中间用空格分开,表示 n 个皇后的坐标。
数据保证不会有两个皇后在同一个地方。
数据规模约定:
- 对于 60% 的数据,1≤n≤100。
- 对于 100% 的数据,1≤n≤。
输出格式
输出一个整数,表示有多少对皇后互相冲突。
样例
input
3 1 1 1 2 1 3
output
3
input
2 1 1 2 2
output
1
input
4 1 3 2 1 3 4 4 2
output
0
思路:用四个数组分别记录每行、每列以及两条对角线上的皇后个数,然后遍历这四个数组根据组合数公式求出两两组合的个数,并求和。注意数组开成long long,否则求组合数的过程中临时变量的结果会溢出。代码如下
#include <iostream>
using namespace std;
int main()
{
int n, x, y, i;
long long ans=0;
cin>>n;
long long *row = new long long[n](), *col = new long long[n](), *m_diag = new long long[2*n-1](), *c_diag = new long long[2*n-1]();
for(i=0; i<n; ++i){
cin>>x>>y;
++row[x-1];
++col[y-1];
++m_diag[y-x+n-1];
++c_diag[x+y-2];
}
for(i=0; i<2*n-1; ++i){
if(i<n){
long long &r = row[i], &c = col[i];
if(r > 0)
ans += r*(r-1)/2;
if(c > 0)
ans += c*(c-1)/2;
}
long long &m_d = m_diag[i], &c_d = c_diag[i];
if(m_d > 0)
ans += m_d*(m_d-1)/2;
if(c_d > 0)
ans += c_d*(c_d-1)/2;
}
cout<<ans;
return 0;
}