GPU规格信息对比

GPU型号Tesla V100T4A100H100昇腾910BB200
发布时间201720182020202220232024
制程工艺12nm12nm7nm4nm (TSMC 4N)7nm4nm (3D封装)
计算核心5120 CUDA2560 CUDA6912 CUDA18432 CUDA4096 NPU24576 CUDA
FP16算力 (TFLOPS)112653127563201450
FP32算力 (TFLOPS)148.119.5672489
显存类型HBM2GDDR6HBM2eHBM3HBM2eHBM3e
显存容量32GB16GB80GB80GB64GB192GB
显存带宽900GB/s320GB/s2TB/s3TB/s1.5TB/s8TB/s
互连技术NVLink 2.0PCIe 3.0NVLink 3.0NVLink 4.0HCCS 2.0NVLink 5.0
互连带宽300GB/s16GB/s600GB/s900GB/s600GB/s1.8TB/s
功耗 (TDP)300W70W400W700W450W1200W (液冷)
软件栈CUDA 10+CUDA 11+CUDA 11+CUDA 12+CANN 6.0CUDA 13+
定位及特性首代Tensor Core,首次引入Tensor Core,支持FP16混合精度训练推理专用GPU,低功耗设计,强化INT8推理能力,GDDR6显存通用计算旗舰,支持TF32精度、MIG多实例切分、HBM2e显存AI超算专用,FP8精度支持、Transformer引擎、NVLink 4.0国产化AI项目替代方案万亿参数模型专用,第二代Transformer引擎、FP6精度、协同计算架构(CPU+GPU联合优化)
### 关于GPU参数对比统计表 在信息技术领域,对于GPU参数的对比通常涉及多个维度的数据收集与整理。目前市场上的工具如GPU-Z、HWMonitor 和 MSI Afterburner 可以为用户提供实时数据支持,包括 GPU 温度、使用率、频率以及电压等关键指标[^1]。 然而,如果目标是构建一份全面的 GPU 参数对比统计表,则需要综合考虑更多因素,例如微架构特性(L0/L1 缓存、Warp 调度器、寄存器堆等)[^3],以及其在实际应用场景中的表现评估。此外,在分布式机器学习环境中,还需要关注 CUDA 的 GPU 加速能、NCCL 多通信效率以及其他性能优化技术的影响[^4]。 尽管当前并没有统一的标准模板来定义这样的表格结构,但可以根据需求设计一个包含以下字段的基础框架: | 型号 | 制造商 | 架构代系 | 显存容量 (GB) | 显存带宽 (GB/s) | CUDA 核心数 | Boost 频率 (MHz) | TDP 功耗 (W) | |------|--------|----------|----------------|------------------|--------------|--------------------|---------------| | RTX 3090 | NVIDIA | Ampere | 24 | 768 | 10,496 | 1,695 | 350 | 此样例仅作为起点示意;具体实现时可根据研究方向扩展列项至更细化的技术规格或者加入实测成绩等内容。 ```python import pandas as pd data = { '型号': ['RTX 3090', 'RX 6900 XT'], '制造商': ['NVIDIA', 'AMD'], '架构代系': ['Ampere', 'RDNA 2'], '显存容量 (GB)': [24, 16], '显存带宽 (GB/s)': [768, 512], 'CUDA/计单元数量': [10496, 80], 'Boost 频率 (MHz)': [1695, 2250], 'TDP 功耗 (W)': [350, 300] } df = pd.DataFrame(data) print(df) ``` 以上代码片段展示了如何利用 Python 中 Pandas 库快速创建并展示简单的 GPU 参数对比表单。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的FOX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值