53.最大子序和【动态规划】

53.最大子序和

题目地址:https://leetcode-cn.com/problems/maximum-subarray/

给定一个整数数组nums,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]

输出: 6

解释: 连续子数组[4,-1,2,1] 的和最大为6。

动规五部曲如下:

1.确定dp数组(dp table)以及下标的含义

dp[i]:包括下标i之前的最大连续子序列和为dp[i]。

2.确定递推公式

dp[i]只有两个方向可以推出来:

dp[i - 1] + nums[i],即:nums[i]加入当前连续子序列和

nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i]);

3.dp数组如何初始化

从递推公式可以看出来dp[i]是依赖于dp[i - 1]的状态,dp[0]就是递推公式的基础。

dp[0]应该是多少呢?

更具dp[i]的定义,很明显dp[0]因为为nums[0]即dp[0] = nums[0]。

4.确定遍历顺序

递推公式中dp[i]依赖于dp[i - 1]的状态,需要从前向后遍历。

5.举例推导dp数组

以示例一为例,输入:nums = [-2,1,-3,4,-1,2,1,-5,4],对应的dp状态如下: 

注意最后的结果可不是dp[nums.size() - 1]!,而是dp[6]。

在回顾一下dp[i]的定义:包括下标i之前的最大连续子序列和为dp[i]。

那么我们要找最大的连续子序列,就应该找每一个i为终点的连续最大子序列。

所以在递推公式的时候,可以直接选出最大的dp[i]。

java代码整体如下:

什么是动态规划

动态规划,英⽂:Dynamic Programming,简称DP,如果某⼀问题有很多重叠⼦问题,使⽤动态规划是最有效的。

动态规划中每⼀个状态⼀定是由上⼀个状态推导出来的,这⼀点就区分于贪⼼,贪⼼没有状态推导,⽽是从局部直接选最优的。

动规和贪心的区别举个例子:

例如:有N件物品和⼀个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能⽤⼀次,求解将哪些物品装⼊背包⾥物品价值总和最⼤。

动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。

但如果是贪⼼呢,每次拿物品选⼀个最⼤的或者最⼩的就完事了,和上⼀个状态没有关系。

动态规划的解题步骤:

对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值