509. 斐波那契数
题目地址:https://leetcode-cn.com/problems/fibonacci-number/
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你n ,请计算 F(n) 。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
* 0 <= n <= 30
思路:
斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。
动态规划:
动规五部曲:
这里我们要用一个一维dp数组来保存递归的结果
1. 确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
2. 确定递推公式
题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
3. dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:
dp[0] = 0;
dp[1] = 1;
4. 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
5. 举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
以上我们用动规的方法分析完了,Java代码如下:
* 时间复杂度:O(n)
* 空间复杂度:O(n)
继续优化,我们其实只需要维护两个数值就可以了,不需要记录整个序列。
* 时间复杂度:O(n)
* 空间复杂度:O(1)
递归解法:
本题还可以使用递归解法来做
* 时间复杂度:O(2^n)
* 空间复杂度:O(n)
什么是动态规划
动态规划,英⽂:Dynamic Programming,简称DP,如果某⼀问题有很多重叠⼦问题,使⽤动态规划是最有效的。
动态规划中每⼀个状态⼀定是由上⼀个状态推导出来的,这⼀点就区分于贪⼼,贪⼼没有状态推导,⽽是从局部直接选最优的。
动规和贪心的区别举个例子:
例如:有N件物品和⼀个最多能背重量为W 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能⽤⼀次,求解将哪些物品装⼊背包⾥物品价值总和最⼤。
动态规划中dp[j]是由dp[j-weight[i]]推导出来的,然后取max(dp[j], dp[j - weight[i]] + value[i])。
但如果是贪⼼呢,每次拿物品选⼀个最⼤的或者最⼩的就完事了,和上⼀个状态没有关系。
动态规划的解题步骤:
对于动态规划问题,可以拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组