MapReduce

  MapReduce 工作原理

 

一个Map-Reduce任务的执行过程以及数据输入输出的类型如下所示:

(input)<k1,v1> -> map -> <k2,v2> -> combine -> <k2,v2> -> reduce -> <k3,v3>(output)

 

下面通过一个的例子并结合源代码来详细说明这个过程

WordCount示例

这也是Hadoop自带的一个例子,目标是统计文本文件中单词的个数。

假设有如下的两个文本文件来运行WorkCount程序:

Hello World Bye World

 

 

Hello Hadoop GoodBye Hadoop

 

 

 


map数据输入

Hadoop针对文本文件缺省使用LineRecordReader类来实现读取,一行一个key/value对,key取偏移量,value为行内容。

如下是map1的输入数据:

Key1

Value1

0

Hello World Bye World

如下是map2的输入数据:

Key1

Value1

0

Hello Hadoop GoodBye Hadoop

map输出/combine输入

如下是map1的输出结果

Key2

Value2

Hello

1

World

1

Bye

1

World

1

如下是map2的输出结果

Key2

Value2

Hello

1

Hadoop

1

GoodBye

1

Hadoop

1

 combine输出

Combiner类实现将相同key的值合并起来,它也是一个Reducer的实现。

如下是combine1的输出

Key2

Value2

Hello

1

World

2

Bye

1

如下是combine2的输出

Key2

Value2

Hello

1

Hadoop

2

GoodBye

1

 reduce输出

Reducer类实现将相同key的值合并起来。

如下是reduce的输出

Key2

Value2

Hello

2

World

2

Bye

1

Hadoop

2

GoodBye

1

即实现了WordCount的处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值