图数据库源起欧拉和图理论,是指以“图”这种数据结构存储和查询数据,主要优点是快速解决复杂的关系问题。 其主要的应用场景包括社交网络、推荐和个性化、客户360,包括实体解析(关联多个来源的用户数据)、欺诈识别和资产管理。
图平台可以在发现和设计阶段为数据科学家和解决方案提供有效的方法,同时图平台也会为业务用户、解决方案开发人员和数据科学家提供各种技能的专用工具。其中,每个用户组都有不同的需求来可视化连通性、索查询结果和更新信息。
在概念探索阶段,研发团队都会搜索全球分析最佳服务的广泛模式和结构,以便来轻松调用打包的程序和算法,企业会通过工具来识别这些程序所属的社区、瓶颈、影响点和路径。此外,算法库也有助于通过减少许多单个过程引入的可变性来确保结果一致。
在解决方案建模的下一阶段,由于团队必须测试假设并开发原型,因此简化流程就得极为重要。企业中各团队可能会使用各种的数据源和工具,因此使用流行或通用的工具就变得极为重要了。
图算法是Neo4j平台的一部分
Neo4j提供了一个不断增长的开放式图形算法库,可针对快速结果进行优化,Neo4j平台的重要组成部分。
图算法通过一组经过测试和支持的核心算法,揭示了在连接数据中的隐藏模式和结构,包括寻路、心和社区检测(见图)。
Neo4j图算法易于应用,因此数据科学家,解决方案开发人员和运营团队都可以使用相同的图形平台。Neo4j图算法非常有效,可以分析数十亿个关系并在几秒到几分钟内获得结果,或者在几个小时内处理大量连接数据的更复杂查询。
下表提供了一系列问题以及用于解决这些问题的特定图算法:
来自 “ https://dzone.com/articles/graph-algorithms-in-neo ”,原文链接:http://blog.itpub.net/31545814/viewspace-2222184/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/31545814/viewspace-2222184/