11、微软团队审批发布与数据库使用指南

微软团队审批发布与数据库使用指南

在现代工作流程自动化领域,将审批流程集成到 Microsoft Teams 以及利用数据库存储和管理数据是提高工作效率和数据处理能力的重要手段。下面将详细介绍如何实现审批流程的配置与测试,以及如何连接和使用 SQL 数据库。

一、审批流程集成到 Microsoft Teams
(一)配置审批流程

在配置审批流程时,若目标文件夹中已存在同名文件,需选择相应操作。可在“如果已有其他文件”下拉菜单中选择操作,如“以新名称移动”。完成此分支配置后,点击“保存”,此时流程已配置为根据审批结果向请求者发送消息,并将触发流程的文件移动到“已批准”或“已拒绝”文件夹。

(二)测试审批流程

测试此流程需满足以下先决条件:
1. 至少有两个启用了 Exchange Online 和 Microsoft Teams 的用户。
2. 用户应启用 Power Automate 应用(原 Flow bot 应用)。
3. 其中一个用户应配置为其他用户的经理。
4. 至少打开两个浏览器会话,一个以审批者身份登录,另一个以请求者身份登录。

可使用 Microsoft 365 管理中心(https://admin.microsoft.com)配置经理关系,具体步骤为:导航至“用户”|“活动用户”,选择要编辑的用户,点击“编辑经理”链接进行配置。

测试流程包含三个核心步骤:
1. 请求审批 :请求者需在 Azure AD 中填充经理字段。具体操作如下:
- 使用单独的浏览器,以请求者用户身份登录 M

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路数学模型。此外,文中列举了大量相关科研方向应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值