uva11297 - Census 线段树套线段树

C. Census
Time Limit: 8 sec

Description

This year, there have been many problems with population calculations, since in some cities, there are many emigrants, or the population growth is very high. Every year the ACM (for Association for Counting Members) conducts a census in each region. The country is divided into N^2 regions, consisting of an N x N grid of regions. Your task is to find the least, and the greatest population in some set of regions. Since in a single year there is no significant change in the populations, the ACM modifies the population counts by some number of inhabitants.

The Input

In the first line you will find N (0 <= N <= 500), in following the N lines you will be given N numbers, which represent, the initial population of city C [i, j]. In the following line is the number Q (Q <= 40000), followed by Q lines with queries: 

There are two possible queries: 

- "x1 y1 x2 y2" which represent the coordinates of the upper left and lower right of where you must calculate the maximum and minimum change in population. 

- "x y v" indicating a change of the population of city C [x, y] by value v.

The Output

For each query, "x1 y1 x2 y2" print in a single line the greatest and least amount of current population. Separated each output by a space. 

Notice: There is only a single test case.

Sample Input Sample Output
5 5
1 2 3 4 5
0 9 2 1 3
0 2 3 4 1
0 1 2 4 5
8 5 3 1 4
4
q 1 1 2 3
c 2 3 10
q 1 1 5 5
q 1 2 2 2 
9 0
10 0
9 2

  两种操作,一种是改变某一个位置的值,另一种是询问一个矩阵内的最大最小值。

  假设有x线段树和y线段树,所有的行组成x树,每行对应一个y树。更新的时候对x进行更新[x1,x2]这个区间,对这个区间x上每个点更新y树的[y1,y2]区间,更新y的叶子结点时,如果y树对应的x是叶子结点,那么直接把maxv和minv都变成v,否则maxv[id][o]=max(maxv[id<<1][o],maxv[id<<1|1][o]);minv[id][o]=min(minv[id<<1][o],minv[id<<1|1][o]);因为x叶子节点对应的y这个位置已经更新过,因此用来更新x非叶子结点也就是包含的是一个区间时x对应的y。y非叶子节点的时候由叶子结点递归上来更新就行了。这个题关键就在于对x非叶子节点的y的更新,不是很好理解。

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef long long LL;

const int MAXN=510;
const int MAXNODE=4*MAXN;
const int INF=0x3f3f3f3f;

int N,M,Q;
int ansMax,ansMin;

struct SegmentTree{
    int maxv[MAXNODE][MAXNODE];
    int minv[MAXNODE][MAXNODE];

    void clear(){
        memset(maxv,-INF,sizeof(maxv));
        memset(minv,INF,sizeof(minv));
    }

    void updateSub(int o,int L,int R,int ql,int qr,int id,int v,int flag){
        if(ql<=L&&qr>=R){
            if(flag){
                maxv[id][o]=v;
                minv[id][o]=v;
            }
            else{
                maxv[id][o]=max(maxv[id<<1][o],maxv[id<<1|1][o]);
                minv[id][o]=min(minv[id<<1][o],minv[id<<1|1][o]);
            }
            return;
        }
        int mid=L+(R-L)/2;
        if(ql<=mid) updateSub(o<<1,L,mid,ql,qr,id,v,flag);
        if(qr>mid) updateSub(o<<1|1,mid+1,R,ql,qr,id,v,flag);
        maxv[id][o]=max(maxv[id][o<<1],maxv[id][o<<1|1]);
        minv[id][o]=min(minv[id][o<<1],minv[id][o<<1|1]);
    }

    void update(int o,int L,int R,int ql,int qr,int subl,int subr,int v){
        if(ql<=L&&qr>=R){
            updateSub(1,1,M,subl,subr,o,v,1);
            return;
        }
        int mid=L+(R-L)/2;
        if(ql<=mid) update(o<<1,L,mid,ql,qr,subl,subr,v);
        if(qr>mid) update(o<<1|1,mid+1,R,ql,qr,subl,subr,v);
        updateSub(1,1,M,subl,subr,o,v,0);
    }

    void querySub(int o,int L,int R,int ql,int qr,int id){
        if(ql<=L&&qr>=R){
            ansMax=max(ansMax,maxv[id][o]);
            ansMin=min(ansMin,minv[id][o]);
            return;
        }
        int mid=L+(R-L)/2;
        if(ql<=mid) querySub(o<<1,L,mid,ql,qr,id);
        if(qr>mid) querySub(o<<1|1,mid+1,R,ql,qr,id);
    }

    void query(int o,int L,int R,int ql,int qr,int subl,int subr){
        if(ql<=L&&qr>=R){
            querySub(1,1,M,subl,subr,o);
            return;
        }
        int mid=L+(R-L)/2;
        if(ql<=mid) query(o<<1,L,mid,ql,qr,subl,subr);
        if(qr>mid) query(o<<1|1,mid+1,R,ql,qr,subl,subr);
    }
}tree;

int main(){
    freopen("in.txt","r",stdin);
    while(scanf("%d%d",&N,&M)!=EOF){
        tree.clear();
        int t;
        for(int i=1;i<=N;i++)
            for(int j=1;j<=M;j++){
                scanf("%d",&t);
                tree.update(1,1,N,i,i,j,j,t);
            }
        int x1,y1,x2,y2,v;
        char str[10];
        scanf("%d",&Q);
        while(Q--){
            ansMax=-INF,ansMin=INF;
            scanf("%s",str);
            if(str[0]=='c'){
                scanf("%d%d%d",&x1,&y1,&v);
                tree.update(1,1,N,x1,x1,y1,y1,v);
            }
            else{
                scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
                tree.query(1,1,N,x1,x2,y1,y2);
                printf("%d %d\n",ansMax,ansMin);
            }
        }
    }
    return 0;
}



阅读更多
个人分类: 数据结构
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

uva11297 - Census 线段树套线段树

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭