import numpy as np
import pandas as pd
df1=pd.read_excel('C:/Users/Administrator/Desktop/南京系统医生审核数据汇总(75314+4599)年龄.xlsx',sheet_name="75314")
df2 = df1.fillna('无')#空值会影响字符串计数
k = pd.DataFrame(columns=['年龄阈值','样本数','阳性数','真阳数','真阴数','假阴数','假阳数','假阴率','假阳率','阳性患者假阴率'])
for i in range(0,6):
if i < 5:#阴性
M1 = df1[(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))]#样本数
M2 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))]#阳性数
M3 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))&(df2['医生审核结果'].str.contains('活动'))]#真阳数
M4 = df1[(df1['活动性肺结核(CTD-topk)']<0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))&(~df2['医生审核结果'].str.contains('活动'))]#真阴数
M5 = df1[(df1['活动性肺结核(CTD-topk)']<0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))&(df2['医生审核结果'].str.contains('活动'))]#假阴数
M6 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))&(~df2['医生审核结果'].str.contains('活动'))]#假阳数
add_data = pd.Series({'年龄阈值':(i/(10)),
'样本数':len(M1),
'阳性数':len(M2),
'真阳数':len(M3),
'真阴数':len(M4),
'假阴数':len(M5),
'假阳数':len(M6),
'假阴率':len(M5)/(len(M1)+1),
'假阳率':len(M6)/(len(M6)+len(M3)+1),
'阳性患者假阴率':len(M5)/(len(M5)+len(M3)+1)})
k = k.append(add_data, ignore_index=True)
else:#阳性
M1 = df1[(df1['活动性肺结核(CTD-topk)']>=(i/(10)))]
M2 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))]
M3 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))&(df2['医生审核结果'].str.contains('活动'))]
M4 = df1[(df1['活动性肺结核(CTD-topk)']<0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))&(~df2['医生审核结果'].str.contains('活动'))]
M5 = df1[(df1['活动性肺结核(CTD-topk)']<0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))&(df2['医生审核结果'].str.contains('活动'))]
M6 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))&(~df2['医生审核结果'].str.contains('活动'))]
add_data = pd.Series({'年龄阈值':(i/(10)),
'样本数':len(M1),
'阳性数':len(M2),
'真阳数':len(M3),
'真阴数':len(M4),
'假阴数':len(M5),
'假阳数':len(M6),
'假阴率':len(M5)/(len(M1)+1),
'假阳率':len(M6)/(len(M6)+len(M3)+1),
'阳性患者假阴率':len(M5)/(len(M5)+len(M3)+1)})
k = k.append(add_data, ignore_index=True)
k.to_csv('C:/Users/Administrator/Desktop/阈值分析.csv')
本篇笔记:
1、dataframe 填充空白 df.fillna(' ')
2、创建新的DF
3、dataframe筛选含有某特定字符串的行 df['列名'].str.contain('特定字符串')。【注:需保证整列为相同符号类型】
4、~符反向筛选
待优化
1、dataframe切割