【自用,防丢失】阈值脚本

import numpy as np
import pandas as pd
df1=pd.read_excel('C:/Users/Administrator/Desktop/南京系统医生审核数据汇总(75314+4599)年龄.xlsx',sheet_name="75314")
df2 = df1.fillna('无')#空值会影响字符串计数
k = pd.DataFrame(columns=['年龄阈值','样本数','阳性数','真阳数','真阴数','假阴数','假阳数','假阴率','假阳率','阳性患者假阴率'])
for i in range(0,6):
    if i < 5:#阴性
        M1 = df1[(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))]#样本数
        M2 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))]#阳性数
        M3 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))&(df2['医生审核结果'].str.contains('活动'))]#真阳数
        M4 = df1[(df1['活动性肺结核(CTD-topk)']<0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))&(~df2['医生审核结果'].str.contains('活动'))]#真阴数
        M5 = df1[(df1['活动性肺结核(CTD-topk)']<0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))&(df2['医生审核结果'].str.contains('活动'))]#假阴数
        M6 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>=(i/(10)))&(df1['活动性肺结核(CTD-topk)']<((i+1)/10))&(~df2['医生审核结果'].str.contains('活动'))]#假阳数
        add_data = pd.Series({'年龄阈值':(i/(10)),
                              '样本数':len(M1),
                              '阳性数':len(M2),
                              '真阳数':len(M3),
                              '真阴数':len(M4),
                              '假阴数':len(M5),
                              '假阳数':len(M6),
                              '假阴率':len(M5)/(len(M1)+1),
                              '假阳率':len(M6)/(len(M6)+len(M3)+1),
                              '阳性患者假阴率':len(M5)/(len(M5)+len(M3)+1)})
        k = k.append(add_data, ignore_index=True)
    else:#阳性
        M1 = df1[(df1['活动性肺结核(CTD-topk)']>=(i/(10)))]
        M2 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))]
        M3 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))&(df2['医生审核结果'].str.contains('活动'))]
        M4 = df1[(df1['活动性肺结核(CTD-topk)']<0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))&(~df2['医生审核结果'].str.contains('活动'))]
        M5 = df1[(df1['活动性肺结核(CTD-topk)']<0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))&(df2['医生审核结果'].str.contains('活动'))]
        M6 = df1[(df1['活动性肺结核(CTD-topk)']>=0.5)&(df1['活动性肺结核(CTD-topk)']>(i/(10)))&(~df2['医生审核结果'].str.contains('活动'))]
        add_data = pd.Series({'年龄阈值':(i/(10)),
                              '样本数':len(M1),
                              '阳性数':len(M2),
                              '真阳数':len(M3),
                              '真阴数':len(M4),
                              '假阴数':len(M5),
                              '假阳数':len(M6),
                              '假阴率':len(M5)/(len(M1)+1),
                              '假阳率':len(M6)/(len(M6)+len(M3)+1),
                              '阳性患者假阴率':len(M5)/(len(M5)+len(M3)+1)})
        k = k.append(add_data, ignore_index=True)
k.to_csv('C:/Users/Administrator/Desktop/阈值分析.csv')

本篇笔记:

1、dataframe 填充空白 df.fillna('  ')

2、创建新的DF

3、dataframe筛选含有某特定字符串的行 df['列名'].str.contain('特定字符串')。【注:需保证整列为相同符号类型】

4、~符反向筛选

待优化

1、dataframe切割

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值