线索二叉树的运算
1. 查找某结点*p在指定次序下的前趋和后继结点
(1)在中序线索二叉树中,查找结点*p的中序后继结点
在中序线索二叉树中,查找结点*p的中序后继结点分两种情形:
① 若*p的右子树空(即p->rtag为Thread),则p->rchild为右线索,直接指向*p的中序后继。
【例】下图的中序线索二叉树中,结点D的中序后继是A。
② 若*p的右子树非空(即p->rtag为Link),则*p的中序后继必是其右子树中第一个中序遍历到的结点。也就是从*p的右孩子开始,沿该孩子的左链往下查找,直至找到一个没有左孩子的结点为止,该结点是*p的右子树中"最左下"的结点,即*P的中序后继结点。
【例】上图的中序线索二叉树中:
A的中序后继是F,它有右孩子;
F的中序后继是H,它无右孩子;
B的中序后继是D,它是B的右孩子。
在中序线索二叉树中求中序后继结点的过程可【参见动画演示】,具体算法如下:
BinThrNode *InorderSuccessor(BinThrNode *p)
{//在中序线索树中找结点*p的中序后继,设p非空
BinThrNode *q;
if (p->rtag==Thread) //*p的右子树为空
Return p->rchild; //返回右线索所指的中序后继
else{
q=p->rchild; //从*p的右孩子开始查找
while (q->ltag==Link)
q=q->lchild; //左子树非空时,沿左链往下查找
return q; //当q的左子树为空时,它就是最左下结点
} //end if
}
该算法的时间复杂度不超过树的高度h,即O(h)。
(2)在中序线索二叉树中查找结点*p的中序前趋结点
中序是一种对称序,故在中序线索二叉树中查找结点*p的中序前趋结点与找中序后继结点的方法完全对称。具体情形如下:
① 若*p的左子树为空,则p->1child为左线索,直接指向*p的中序前趋结点;
【例】上图所示的中序线索二叉树中,F结点的中序前趋结点是A
② 若*p的左子树非空,则从*p的左孩子出发,沿右指针链往下查找,直到找到一个没有右孩子的结点为止。该结点是*p的左子树中"最右下"的结点,它是*p的左子树中最后一个中序遍历到的结点,即*p的中序前趋结点。
【例】上图所示中序线索二叉树中,结点E左子树非空,其中序前趋结点是I
在中序线索二叉树中求中序前趋结点的过程可【参见动画演示】,具体算法如下:
BinThrNode *Inorderpre(BinThrNode *p)
{//在中序线索树中找结点*p的中序前趋,设p非空
BinThrNode *q;
if (p->ltag==Thread) //*p的左子树为空
return p->lchild; //返回左线索所指的中序前趋
else{
q=p->lchild; //从*p的左孩子开始查找
while (q->rtag==Link)
q=q->rchild; //右子树非空时,沿右链往下查找
return q; //当q的右子树为空时,它就是最右下结点
} //end if
}
由上述讨论可知:对于非线索二叉树,仅从*p出发无法找到其中序前趋(或中序后继),而必须从根结点开始中序遍历,才能找到*p的中序前趋(或中序后继)。线索二叉树中的线索使得查找中序前趋和中序后继变得简单有效。
(3) 在后序线索二叉树中,查找指定结点*p的后序前趋结点
在后序线索二叉树中,查找指定结点*p的后序前趋结点的具体规律是:
① 若*p的左子树为空,则p->lchild是前趋线索,指示其后序前趋结点。
【例】在下图所示的后序线索二叉树中,H的后序前趋是B,F的后序前趋是C。
② 若*p的左子树非空,则p->lchild不是前趋线索。由于后序遍历时,根是在遍历其左右子树之后被访问的,故*p的后序前趋必是两子树中最后一个遍历结点。
当*p的右子树非空时,*p的右孩子必是其后序前趋
【例】在上图所示的后序线索二叉树中,A的后序前趋是E;
当*p无右子树时,*p的后序前趋必是其左孩子
【例】在上图所示的后序线索二叉树中,E的后序前趋是F
(4) 在后序线索二叉树中,查找指定结点*p的后序后继结点
具体的规律:
① 若*p是根,则*p是该二叉树后序遍历过程中最后一个访问到的结点。*p的后序后继为空
② 若*p是其双亲的右孩子,则*p的后序后继结点就是其双亲结点
【例】上图所示的后序线索二叉树中,E的后序后继是A。
③ 若*p是其双亲的左孩子,但*P无右兄弟,*p的后序后继结点是其双亲结点
【例】上图所示的后序线索二叉树中,F的后序后继是E。
④ 若*p是其双亲的左孩子,但*p有右兄弟,则*p的后序后继是其双亲的右子树中第一个后序遍历到的结点,它是该子树中"最左下的叶结点"
【例】上图所示的后序线索二叉树中,B的后序后继是双亲A的右子树中最左下的叶结点H
注意:
F是孩子树中"最左下"结点,但它不是叶子。
由上述讨论中可知:在后序线索树中,仅从*p出发就能找到其后序前趋结点;要找*p的后序后继结点,仅当*p的右子树为空时,才能直接由*p的右线索p->rchild得到。否则必须知道*p的双亲结点才能找到其后序后继。因此,如果线索二叉树中的结点没有指向其双亲结点的指针,就可能要从根开始进行后序遍历才能找到结点*P的后序后继。由此,线索对查找指定结点的后序后继并无多大帮助。
(5) 在前序线索二叉树中,查找指定结点*p的前序后继结点
【参见练习】
(6) 在前序线索二叉树中,查找指定结点*p的前序前趋结点
【参见参考书】
在前序线索二叉树中,找某一点*p的前序后继也很简单,仅从*p出发就可以找到;但找其前序前趋也必须知道*p的双亲结点。当树中结点未设双亲指针时,同样要进行从根开始的前序遍历才能找到结点*p的前序前趋。
2.遍历线索二叉树
遍历某种次序的线索二叉树,只要从该次序下的开始结点开发,反复找到结点在该次序下的后继,直至终端结点。
遍历中序线索二叉树算法:
void TraverseInorderThrTree(BinThrTree p)
{ //遍历中序线索二叉树
if(p){//树非空
while(p->ltag==Link)
p=p->lchild; //从根往下找最左下结点,即中序序列的开始结点
do{
printf("%c",p->data); //访问结点
p=InorderSuccessor(p); //找*p的中序后继
}while(p)
}//endif
}//TraverselnorderThrTree
分析:
① 中序序列的终端结点的右线索为空,所以do语句的终止条件是p==NULL。
② 该算法的时间复杂性为O(n)。因为是非递归算法,常数因子上小于递归的遍历算法。因此,若对一棵二叉树要经常遍历,或查找结点在指定次序下的前趋和后继,则应采用线索链表作为存储结构为宜。
③ 以上介绍的线索二叉树是一种全线索树(即左右线索均要建立)。许多应用中只要建立左右线索中的一种。
④ 若在线索链表中增加一个头结点,令头结点的左指针指向根,右指针指向其遍历序列的开始或终端结点会更方便。
转载自:http://student.zjzk.cn/course_ware/data_structure/web/shu/shu6.4.3.htm