被3整除的 子序列

本文探讨了如何使用线性动态规划(DP)解决一个问题:给定一个字符串,计算以3的倍数结尾的子序列的个数。通过状态转移方程,文章详细解释了状态表示、转移过程以及两种不同的DP方法,一种是闫氏分析法,另一种是状态简化后的状态转移。复杂度分析和AC代码示例也清晰呈现了解决方案。
摘要由CSDN通过智能技术生成

被3整除的子序列
线性 dp
如果知道:一个数如果可以被3整除,那么这个数各位和一定可以被3整除,这个题就比较好做了
(验证了一下1-9只有3满足这个性质)

闫氏dp分析法

首先我们要明确动态变量都有什么:以 i i i 结尾,以 i i i 结尾的子序列各位和 % 3 \%3 %3 取模为 j ∈ ( 0 , 1 , 2 ) j \in (0,1,2) j(0,1,2)
1.状态表示: f [ i ] [ j ] f[i][j] f[i][j] 以第 i i i 位结尾,各位和 % 3 \%3 %3 j j j 的集合数
2. f [ i ] [ j ] f[i][j] f[i][j] 方案数
3.集合划分:每次转移都是从 f [ 1 , 2 , 3... i − 1 ] [ 0 , 1 , 2 ] f[1,2,3...i-1][0,1,2] f[1,2,3...i1][0,1,2]
第三层for循环其实就是以 i i i 结尾的已经确定了,在后边加上一个字符 s [ k ] s[k] s[k] ,更新以 k k k 结尾的子序列
复杂度: O ( n 2 ) O(n^2) O(n2)
(感觉这个思路比较容易理解
AC代码:

#include<bits/stdc++.h>
#define ll long long
#define _ 0
using namespace std;
const int maxn = 5e3 + 9;
const int mod = 1e9 + 7;
ll n, m, ans;
ll f[59][3];
char s[59];
void work()
{
	scanf("%s",s + 1);
	n = strlen(s + 1);
	for(int i = 1; i <= n; ++i)// 初始化边界 
		f[i][(s[i] - '0') % 3] = 1; 
	for(int i = 1; i <= n; ++i)
		for(int j = 0; j < 3; ++j)
			for(int k = i + 1; k <= n; ++k)
				f[k][(j + s[k] - '0') % 3] = (f[k][(j + s[k] - '0') % 3] + f[i][j]) % mod;
	ll ans = 0;
	for(int i = 1; i <= n; ++i) ans = (ans + f[i][0]) % mod;
	cout << ans << endl;
}

int main()
{
	ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
	//int TT;cin>>TT;while(TT--)
	work();
	return ~~(0^_^0);
}

其他dp方法

也是要首先明确动态变量,也就是状态:前 i i i 位字符组成的子序列,各位和 % 3 \%3 %3 j ∈ ( 0 , 1 , 2 ) j\in (0,1,2) j(0,1,2)
d p [ i ] [ j ] dp[i][j] dp[i][j] 为前 i i i 位字符组成的子序列中,各位和 % 3 \%3 %3 j j j 的集合数
那么包含前面的选择,对于第 i i i 位有选与不选两种决策:
设第 i i i 位为数字 % 3 = m \%3=m %3=m
如果不选择第 i i i 位,那么对答案没有贡献,直接加上 d p [ i − 1 ] [ j ] dp[i-1][j] dp[i1][j] 的答案,这时候是前 i − 1 i-1 i1 个字符组成的子序列最后没有加上第 i i i 位。
如果选择第 i i i 位,首先它自己单独成一个序列(即初始化),会对 d p [ i ] [ m ] dp[i][m] dp[i][m] 贡献 1 1 1 ,然后考虑给前 i − 1 i-1 i1 个字符组成的所有子序列末尾加上第 i i i 位,当前各位和为 j j j,那么它应该由各位和为 p = ( j − m + 3 ) % 3 p=(j-m+3)\%3 p=(jm+3)%3 的状态转移过来,使得 ( p + m ) % 3 = j (p+m)\%3=j (p+m)%3=j
这篇博客有助于理解

那么状态转移方程
选: d p [ i ] [ j ] + = d p [ i − 1 ] [ ( j − m + 3 ) % m o d ] dp[i][j] += dp[i-1][(j-m+3)\%mod] dp[i][j]+=dp[i1][(jm+3)%mod]
不选: d p [ i ] [ j ] + = d p [ i − 1 ] [ j ] dp[i][j] + = dp[i-1][j] dp[i][j]+=dp[i1][j]
最终答案: d p [ n ] [ 0 ] dp[n][0] dp[n][0]
复杂度: O ( n ) O(n) O(n)

AC代码:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 2e5 + 9;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
string s;
int f[100][3];

void work()
{
	cin >> s;
	n = s.size(); s = "@" + s;
	for(int i = 1; i <= n; ++i)
	{
		for(int j = 0; j < 3; ++j) f[i][j] = f[i-1][j];// 计数先承接上一层的
		f[i][(s[i] - '0') % 3] += 1; // 更新这一层的 
		for(int j = 0; j < 3; ++j)// 转移
		{
			int k = (s[i] - '0' + j) % 3;
			f[i][k] = (f[i][k] + f[i-1][j]) % mod;
		}
	}
	cout << f[n][0];
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

### 回答1: 这是一个关于去除子序列中包含数字3的题目。给你一个长度为50的数字串,问你有多少个子序列构成的数字串可以被3整除。答案为1e9+7取模。 输入描述: 输入一个字符串,由0-9组成,长度小于等于50。 输出描述: 输出一个整数,表示答案。 输入一个长度为50的数字字符串,由数字组成。让你输出里面去掉子序列包含数字3的数字串的长度。举个例子,输入132,因为包含3,所以去掉{3,13,32,132}四个子序列,去掉后只剩下1个子序列2,所以输出3。 ### 回答2: 本题可以使用动态规划的思路来解决。我们可以使用一个二维数组dp[i][j]表示以第i个数字结尾的长度为j的子序列能否被3整除,其中i的范围是1到50,j的范围是1到50。dp[i][j]的值为0或1,0表示不能被3整除,1表示能被3整除。 对于dp[i][j],我们可以通过dp[i-1][j-1]或dp[i-1][j]来转移。如果dp[i-1][j-1]为1,则说明在前面的j-1个数字中有一个子序列能被3整除,此时如果第i个数字为0、3、6或9,则dp[i][j]也能被3整除,否则不能;如果dp[i-1][j]为1,则说明在前面的j个数字中有一个子序列能被3整除,此时如果第i个数字为1、4或7,则dp[i][j]也能被3整除,否则不能。 最终,我们只需要将dp数组中所有值等于1的元素的个数相加,并将结果对1e9+7取模即可。 以下是完整代码: ### 回答3: 题目描述 给定一个长度为50的数字串,求出其中有多少个子序列的和可以被3整除。输出对10^9+7取模的答案。 思路分析 我们可以先将给定的数字串转换成数字数组,将其看做是一个长度为n的数组a。我们令dp[i][0]为a[1]~a[i]中被3整除子序列的个数,dp[i][1]为a[1]~a[i]中余1的子序列的个数,dp[i][2]为余2的子序列的个数。注意我们计算余数时可以直接用数值模3,余数就是该数值除以3的余数。 那么如果我们现在已经求出了dp[i-1][0],dp[i-1][1]和dp[i-1][2],我们如何求dp[i][0],dp[i][1]和dp[i][2]呢?我们考虑当前数值a[i]对于这三种状态的影响: 如果a[i]可以被3整除,那么它可以加入到之前状态为0的所有子序列中,我们有dp[i][0] = dp[i-1][0] + 1,同时之前状态为1的子序列末尾加入该数后会变成状态为0的子序列,同样的,之前状态为2的子序列末尾加入该数也会变成状态为1的子序列,所以我们还需要加上dp[i-1][1]和dp[i-1][2]; 如果a[i]除以3余1,那么它可以加入到之前状态为2的所有子序列中,我们有dp[i][1] = dp[i-1][1] + 1,同时之前状态为0的子序列末尾加入该数后会变成状态为1的子序列,同样的,之前状态为1的子序列末尾加入该数也会变成状态为2的子序列,所以我们还需要加上dp[i-1][0]和dp[i-1][2]。 如果a[i]除以3余2,那么同理可以得到dp[i][2]的状态转移方程。 最终我们的答案即为dp[n][0],因为被3整除的数字序列余数为0。同时,我们要注意答案需要对1e9+7取模。 时间复杂度为O(n)。 参考代码 这里给出Java代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值