2021 RoboCom 世界机器人开发者大赛-本科组(初赛)

本文详细解析了PTA平台上的四道算法题目,包括芬兰木棋、全源最短路、打怪升级及动态连通性问题。通过Floyd-Warshall算法、并查集等数据结构与算法,深入讲解了每道题目的解题思路和代码实现,帮助读者理解算法在实际问题中的应用。
摘要由CSDN通过智能技术生成

PTA考试链接

第一题就暴力

第二题 芬兰木棋
被这题背刺了,最后才想明白wa点,想了一个小时,没时间写了,草了
当时贪心就拿了17分
下边是正解
用每个方向 gcd = 1 的坐标映射为这个方向,然后 gcd 作为 每个点在这个方向的坐标(也就是编号,id)因为一个方向上的点从原点出发有先后顺序,编号即可先后顺序。
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 1e5 + 9;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
ll n, m;
int x[maxn], y[maxn], p[maxn];
map<pair<int,int>,int> ma;
struct node
{
	int id, p;
	bool operator<(const node &B)const{
		return id > B.id;
	}
};
vector <node> v[maxn];
vector <node> xp,xn,yp,yyn;
int id;
int getans(vector <node> v, int ans = 0)
{
	if(v.size() == 1) return 1;
	sort(v.begin(), v.end());
	v.push_back({inf, 0});
	for(int i = 1; i < v.size(); ++i)
	{
		if(v[i].p == v[i-1].p && v[i].p == 1);
		else ++ans;
	}
	return ans;
}
void work()
{
	int n;
	cin >> n;
	ll ans = 0;
	for(int i = 1; i <= n; ++i)
	{
		cin >> x[i] >> y[i] >> p[i];
		ans += p[i];
		if(!x[i])
		{
			if(y[i] > 0) yp.push_back({y[i], p[i]});
			else yyn.push_back({-y[i], p[i]});
		}
		else if(!y[i])
		{
			if(x[i] > 0) xp.push_back({x[i], p[i]});
			else xn.push_back({-x[i], p[i]});
		}
		else
		{
			int d = __gcd(abs(x[i]), abs(y[i]));
			x[i] /= d; y[i] /= d;
			if(!ma.count({x[i], y[i]})){
				ma[{x[i], y[i]}] = ++id;
				v[id].push_back({d, p[i]});
			}
			else v[ma[{x[i], y[i]}]].push_back({d, p[i]});
		}
	}
	int cz = 0;
	for(int i = 1; i <= id; ++i)
	{
		cz += getans(v[i]);
	}
	cz += getans(xp);
	cz += getans(xn);
	cz += getans(yp);
	cz += getans(yyn);
	cout << ans << " " << cz;
}

int main()
{
	ios::sync_with_stdio(0);
	//int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

第三题 打怪升级
思路:
先用 F l o y e d Floyed Floyed 算法求出全源最短路,然后暴力求出空降点 B 0 B_0 B0
注意空降的编号是考虑攻克所有点,而不仅仅是查询的点
然后跑一遍 B 0 B_0 B0 点的最短路
最短路可能不止一条,因此也结合了最短路计数这道题
不会计数可以做做这道题
p r e pre pre 记录路径,更新最短路的时候顺便更新路径和武器价值即可
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 1e3 + 9;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
ll n, m;
int dis[maxn][maxn], Dis[maxn];
int val[maxn];
struct node
{
	int to, next, val, eng;
}e[maxn*maxn];
int head[maxn], cnt, vis[maxn];
int pre[maxn];
inline void add(int x, int y, int z, int p)
{
	e[++cnt].to = y;
	e[cnt].eng = z;
	e[cnt].val = p;
	e[cnt].next = head[x];
	head[x] = cnt;
}
void dij(int s)
{
	memset(Dis, 0x3f, sizeof(Dis));
	Dis[s] = 0;
	priority_queue<pair<int,int>,vector<pair<int,int> >, greater<pair<int,int> > > q;
	q.push({0, s});
	while(!q.empty())
	{
		int now = q.top().second;q.pop();
		if(vis[now]) continue;
		vis[now] = 1;
		for(int i = head[now]; i; i = e[i].next)
		{
			int to = e[i].to;
			if(Dis[to] > Dis[now] + e[i].eng)
			{
				Dis[to] = Dis[now] + e[i].eng;
				val[to] = val[now] + e[i].val;
				pre[to] = now;
				q.push({Dis[to], to});
			}
			else if(Dis[to] == Dis[now] + e[i].eng)
			{
				if(val[to] < val[now] + e[i].val){
					val[to] = val[now] + e[i].val;
					pre[to] = now;
				}
			}
		}
	}
}
void print(int st, int en)
{
	if(st == en) cout << st << endl;
	else
	{
		int j = en;
		stack <int> s; 
		while(j != st)
		{
			s.push(j);
			j = pre[j];
		}
		s.push(st);
		while(!s.empty()){
			cout << s.top();s.pop();
			if(s.size()) cout << "->";
			else cout << endl;
		}
	}
}
void work()
{
	cin >> n >> m;
	memset(dis, 0x3f, sizeof(dis));
	for(int i = 1; i <= n; ++i) dis[i][i] = 0;
	for(int i = 1; i <= m; ++i)
	{
		int x, y, a, b;cin >> x >> y >> a >> b;
		add(x, y, a, b);add(y, x, a, b);
		dis[x][y] = dis[y][x] = a;
	}
	for(int k = 1; k <= n; ++k)
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= n; ++j)
					if(dis[i][j] > dis[i][k] + dis[k][j])
						dis[i][j] = dis[i][k] + dis[k][j];
	
	vector <int> v;
	int k;cin >> k;
	for(int i = 0; i < k; ++i)
	{
		int p;cin >> p;
		v.push_back(p);
	}
	int Min = inf, pos;
	for(int i = n; i >= 1; --i)
	{
		int Max = 0, po;
		for(int j = 1; j <= n; ++j) if(j != i)
		{
			if(dis[i][j] > Max) Max = dis[i][j];
		}
		if(Min >= Max) Min = Max, pos = i;
	}
	cout << pos << endl;
	dij(pos);
	for(int i = 0; i < v.size(); ++i)
	{
		print(pos, v[i]);
		cout << Dis[v[i]] << " " << val[v[i]] << endl;
	}
}

int main()
{
	ios::sync_with_stdio(0);
	//int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

第四题
建图,暴搜,特判点起点终点就能拿22分
正解是思维+并查集
正向是删点的过程,比较麻烦,难处理
考虑离线查询
倒着遍历查询就是加点的过程,这个过程就很舒服了
用并查集维护连通性即可
注意要先查询答案再更新加点,还有就是要先更新掉没有被删掉的点,再进行离线查询
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
using namespace std;
const int maxn = 1e5 + 9;
const int mod = 1e9 + 7;
ll n, m;
int f[maxn];
vector <int> v[maxn];
struct node
{
	int x, y;
	vector <int> a;
	vector <int> b;
}l[1009];
int Find(int x)
{
	return x == f[x] ? x : f[x] = Find(f[x]);
}
int pos[maxn], vis[maxn];
void work()
{
	int d;cin>>n>>m>>d;
	for(int i = 1; i <= n; ++i) f[i] = i;
	for(int i = 1; i <= m; ++i)
	{
		int x, y;cin >> x >> y;
		v[x].push_back(y);v[y].push_back(x);
	}
	for(int i = 1; i <= d; ++i)
	{
		cin >> l[i].x >> l[i].y;
		pos[l[i].x] = 1;
		for(int j = 1; j <= l[i].y; ++j)
		{
			int u, v;cin >> u >> v;
			l[i].a.push_back(u);
			l[i].b.push_back(v);
		}
	}
	for(int i = 1; i <= n; ++i) if(!pos[i])// 先更新没有被删的点
	{
		int u = Find(i);
		for(int j = 0; j < v[i].size(); ++j)
		{
			if(pos[v[i][j]]) continue;
			int p = Find(v[i][j]);
			if(p !=u) f[p] = u;
		}
	}

	stack<int> s;
	for(int i = d; i >= 1; --i)
	{
		int ans = 0;
		for(int j = 0; j < l[i].y; ++j)
		{
			int xx = Find(l[i].a[j]);
			int yy = Find(l[i].b[j]);
			if(xx != yy) ++ans;
		}
		
		int u = l[i].x;
		pos[u] = 0;
		int xx = Find(u);
		for(int j = 0; j < v[u].size(); ++j)
		{
			if(pos[v[u][j]]) continue;
			int yy = Find(v[u][j]);
			if(xx != yy){
				f[yy] = xx;
			}
		}
		s.push(ans);
	}
	while(!s.empty())
	{
		cout << s.top();
		if(s.size() != 1) cout << endl;
		s.pop();
	}
}

int main()
{
	ios::sync_with_stdio(0);
	//int TT;cin>>TT;while(TT--)
	work();
	return 0;
}
/*
5 5 3
1 2
1 3
1 5
2 5
3 4

4 3
1 3
1 4
2 3

5 3
3 4
2 3
3 5

1 3
2 3
2 5
3 4
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值