计数dp(组合数学

E - Rook Path
题意:
n ∗ m ( n , m < 1 0 9 ) n*m(n,m<10^9) nm(n,m<109) 的网格中,初始在 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),每次可以移动到当前行的任意列或者当前列的任意行(不能原地不动),求到 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) 的方案数,答案对 998244353 998244353 998244353 取模
思路:
题解
二维转一维
这种题有套路,横向移动和纵向移动是可以分开来考虑的
我们单独考虑横向上走了 m m m 步,纵向走了 k − m k-m km 步,然后乘 C n m C_n^m Cnm
枚举 m m m ∑ \sum
状态设置
f [ 0 ] [ i ] f[0][i] f[0][i] 为一维上的,从起点出发,走了 i i i 步,最后没有回到起点的方案数
f [ 1 ] [ i ] f[1][i] f[1][i] 为一维上的,从起点出发,走了 i i i 步,最后回到起点的方案数
转移方程:
只看一维的 n n n 行,也就是竖着一维上的 n n n 个点
f [ 0 ] [ i ] = f [ 1 ] [ i − 1 ] + ( n − 2 ) ∗ f [ 0 ] [ i − 1 ] f[0][i] = f[1][i - 1] + (n - 2) * f[0][i-1] f[0][i]=f[1][i1]+(n2)f[0][i1],第 i i i 步没有在起点,可以从起点过来,但是不能自己到自己,所以是 ( n − 2 ) (n - 2) (n2)
f [ 1 ] [ i ] = ( n − 1 ) ∗ f [ 0 ] [ i − 1 ] f[1][i] = (n - 1) *f[0][i - 1] f[1][i]=(n1)f[0][i1],第 i i i 步回到了起点,前 i − 1 i-1 i1 步就应该不在起点上,所以要乘上 ( n − 1 ) (n - 1 ) (n1)
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 1e6 + 9;
const int mod = 998244353;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
ll k;
ll a, b, c, d;
ll fac[maxn], inv[maxn];
ll fn[2][maxn], fm[2][maxn];

void init(){
	fac[0] = inv[0] = 1;
	fac[1] = inv[1] = 1;
	for(int i = 2; i <= maxn - 9; ++i)
		fac[i] = fac[i-1] * i % mod,
		inv[i] = (mod - mod / i) * inv[mod % i] % mod;
	for(int i = 1; i <= maxn - 9; ++i)
		inv[i] = inv[i] * inv[i-1] % mod;
}

ll C(ll n, ll m){
	if(n < m) return 0ll;
	else if(n == m) return 1ll;
	return fac[n] * inv[m] % mod * inv[n-m] % mod;
}
void work()
{
	init();
	cin >> n >> m >> k;
	cin >> a >> b >> c >> d;
	fn[1][0] = 1;
	for(int i = 1; i <= k; ++i){
		(fn[1][i] = (n - 1) * fn[0][i - 1]) %= mod;
		(fn[0][i] = (n - 2) * fn[0][i - 1] + fn[1][i - 1]) %= mod;
	}
	fm[1][0] = 1;
	for(int i = 1; i <= k; ++i){
		(fm[1][i] = (m - 1) * fm[0][i - 1]) %= mod;
		(fm[0][i] = (m - 2) * fm[0][i - 1] + fm[1][i - 1]) %= mod;
	}
	ll ans = 0;
	for(int i = 0; i <= k; ++i){
		(ans = ans + C(k, i) * (fn[a == c][i] * fm[b == d][k-i] % mod)) %= mod;
	}
	cout << ans;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

P6870 [COCI2019-2020#5] Zapina
题意:
n n n互不相同的人和 n n n互不相同的题目,第 i i i 个人开心当且仅当他被分配了 i i i 道题目
求至少一个人开心的分配方案数
思路:
考虑 f [ i ] [ j ] f[i][j] f[i][j] 表示考虑前 i i i 个人,分配了 j j j 道题目,没有人开心的方案数
那么最后的答案就为 n n − f [ n ] [ n ] n^n-f[n][n] nnf[n][n]
考虑第 i i i 个人分配 k k k 道题目,那么前 i − 1 i-1 i1 个人就分配 j − k j-k jk 道题目, n − ( j − k ) n-(j-k) n(jk),就是剩下的题目数,从中选出 k k k 个就是分配给 i i i 个人的方案数
code:

#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 4e2 + 9;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
ll c[maxn][maxn];
ll f[maxn][maxn];
// f[i][j] 为 前i个人分配j个题,没有人开心的方案数 
ll C(ll n, ll m){
	if(n < m) return 0ll;
	if(c[n][m]) return c[n][m];
	if(n == m || m == 0) return c[n][m] = 1;
	return c[n][m] = (C(n - 1, m) + C(n - 1, m - 1)) % mod;
}
ll q_pow(ll a, ll b){
	ll ans = 1;while(b){
		if(b & 1) ans=ans*a%mod;
		b >>= 1;
		a = a * a % mod;
	}return ans;
}
void work()
{
	cin >> n;
	f[0][0] = 1;
	for(int i = 1; i <= n; ++i){
		for(int j = 0; j <= n; ++j){
			for(int k = 0; k <= j; ++k){// 枚举第i个人分配的题目数量
				if(k != i){
					f[i][j] = (f[i][j] + f[i-1][j-k] * C(n - (j - k), k) % mod) % mod;
				}
			}
		}
	}
	cout << (q_pow(n, n) - f[n][n] + mod) % mod;
}

int main()
{
	ios::sync_with_stdio(0);
//	int TT;cin>>TT;while(TT--)
	work();
	return 0;
}

矩阵计数是一道经典的组合数学问题,可以用状压DP来解决。以下是一份Python代码的参考实现。 首先,我们需要输入矩阵的行数和列数,以及每行和每列的限制数。然后,我们可以使用二进制数来表示每行和每列的状态,其中1表示该行或该列已经有了一个矩阵,0表示该行或该列还可以放置一个矩阵。 接下来,我们可以使用状压DP来计算矩阵的数量。我们可以定义一个三维数组dp,其中dp[i][j][s]表示在第i行,第j列,状态为s时的矩阵数量。可以通过枚举上一个状态s',来更新dp[i][j][s]。具体来说,如果s'与s在第i行和第j列上的状态都是0,则可以从dp[i][j-1][s']或dp[i-1][j][s']转移而来。如果s'与s在第i行或第j列上的状态不同,则不能转移。最后,dp[m][n][0]就是最终的答案。 下面是完整的代码实现: ```python n, m, k1, k2 = map(int, input().split()) # 行状态用二进制数表示 row_mask = [0] * n for i in range(n): row_mask[i] = int(''.join(input().split()), 2) # 列状态用二进制数表示 col_mask = [0] * m for j in range(m): col_mask[j] = int(''.join(input().split()), 2) # 初始化dp数组 dp = [[[0 for _ in range(1 << m)] for _ in range(m + 1)] for _ in range(n + 1)] dp[0][0][0] = 1 # 状压DP for i in range(1, n + 1): for j in range(m + 1): for s in range(1 << m): for sp in range(1 << m): # 如果s'与s在第i行和第j列上的状态都是0,则可以从dp[i][j-1][s']或dp[i-1][j][s']转移而来 if (sp & s) == 0 and (row_mask[i - 1] & sp) == 0 and (col_mask[j - 1] & sp) == 0: if j == 0: dp[i][1][sp] += dp[i - 1][m][s] else: dp[i][j + 1][sp] += dp[i][j][s] + dp[i - 1][j][s] # 如果s'与s在第i行或第j列上的状态不同,则不能转移 else: continue # 计算答案 ans = 0 for s in range(1 << m): if bin(s).count('1') == k2: ans += dp[n][m][s] print(ans % 998244353) ``` 其中,我们使用了Python内置的bin函数来将一个整数转换为二进制字符串,并使用count方法来计算其中1的个数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值