E - Rook Path
题意:
在
n
∗
m
(
n
,
m
<
1
0
9
)
n*m(n,m<10^9)
n∗m(n,m<109) 的网格中,初始在
(
x
1
,
y
1
)
(x_1,y_1)
(x1,y1),每次可以移动到当前行的任意列或者当前列的任意行(不能原地不动),求到
(
x
2
,
y
2
)
(x_2,y_2)
(x2,y2) 的方案数,答案对
998244353
998244353
998244353 取模
思路:
题解
二维转一维
这种题有套路,横向移动和纵向移动是可以分开来考虑的
我们单独考虑横向上走了
m
m
m 步,纵向走了
k
−
m
k-m
k−m 步,然后乘
C
n
m
C_n^m
Cnm
枚举
m
m
m 求
∑
\sum
∑
状态设置
f
[
0
]
[
i
]
f[0][i]
f[0][i] 为一维上的,从起点出发,走了
i
i
i 步,最后没有回到起点的方案数
f
[
1
]
[
i
]
f[1][i]
f[1][i] 为一维上的,从起点出发,走了
i
i
i 步,最后回到起点的方案数
转移方程:
只看一维的
n
n
n 行,也就是竖着一维上的
n
n
n 个点
f
[
0
]
[
i
]
=
f
[
1
]
[
i
−
1
]
+
(
n
−
2
)
∗
f
[
0
]
[
i
−
1
]
f[0][i] = f[1][i - 1] + (n - 2) * f[0][i-1]
f[0][i]=f[1][i−1]+(n−2)∗f[0][i−1],第
i
i
i 步没有在起点,可以从起点过来,但是不能自己到自己,所以是
(
n
−
2
)
(n - 2)
(n−2)
f
[
1
]
[
i
]
=
(
n
−
1
)
∗
f
[
0
]
[
i
−
1
]
f[1][i] = (n - 1) *f[0][i - 1]
f[1][i]=(n−1)∗f[0][i−1],第
i
i
i 步回到了起点,前
i
−
1
i-1
i−1 步就应该不在起点上,所以要乘上
(
n
−
1
)
(n - 1 )
(n−1)
code:
#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 1e6 + 9;
const int mod = 998244353;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
ll k;
ll a, b, c, d;
ll fac[maxn], inv[maxn];
ll fn[2][maxn], fm[2][maxn];
void init(){
fac[0] = inv[0] = 1;
fac[1] = inv[1] = 1;
for(int i = 2; i <= maxn - 9; ++i)
fac[i] = fac[i-1] * i % mod,
inv[i] = (mod - mod / i) * inv[mod % i] % mod;
for(int i = 1; i <= maxn - 9; ++i)
inv[i] = inv[i] * inv[i-1] % mod;
}
ll C(ll n, ll m){
if(n < m) return 0ll;
else if(n == m) return 1ll;
return fac[n] * inv[m] % mod * inv[n-m] % mod;
}
void work()
{
init();
cin >> n >> m >> k;
cin >> a >> b >> c >> d;
fn[1][0] = 1;
for(int i = 1; i <= k; ++i){
(fn[1][i] = (n - 1) * fn[0][i - 1]) %= mod;
(fn[0][i] = (n - 2) * fn[0][i - 1] + fn[1][i - 1]) %= mod;
}
fm[1][0] = 1;
for(int i = 1; i <= k; ++i){
(fm[1][i] = (m - 1) * fm[0][i - 1]) %= mod;
(fm[0][i] = (m - 2) * fm[0][i - 1] + fm[1][i - 1]) %= mod;
}
ll ans = 0;
for(int i = 0; i <= k; ++i){
(ans = ans + C(k, i) * (fn[a == c][i] * fm[b == d][k-i] % mod)) %= mod;
}
cout << ans;
}
int main()
{
ios::sync_with_stdio(0);
// int TT;cin>>TT;while(TT--)
work();
return 0;
}
P6870 [COCI2019-2020#5] Zapina
题意:
n
n
n 个互不相同的人和
n
n
n 个互不相同的题目,第
i
i
i 个人开心当且仅当他被分配了
i
i
i 道题目
求至少一个人开心的分配方案数
思路:
考虑
f
[
i
]
[
j
]
f[i][j]
f[i][j] 表示考虑前
i
i
i 个人,分配了
j
j
j 道题目,没有人开心的方案数
那么最后的答案就为
n
n
−
f
[
n
]
[
n
]
n^n-f[n][n]
nn−f[n][n]
考虑第
i
i
i 个人分配
k
k
k 道题目,那么前
i
−
1
i-1
i−1 个人就分配
j
−
k
j-k
j−k 道题目,
n
−
(
j
−
k
)
n-(j-k)
n−(j−k),就是剩下的题目数,从中选出
k
k
k 个就是分配给
i
i
i 个人的方案数
code:
#include<bits/stdc++.h>
#define endl '\n'
#define ll long long
#define ull unsigned long long
#define ld long double
#define all(x) x.begin(), x.end()
#define eps 1e-6
using namespace std;
const int maxn = 4e2 + 9;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
ll n, m;
ll c[maxn][maxn];
ll f[maxn][maxn];
// f[i][j] 为 前i个人分配j个题,没有人开心的方案数
ll C(ll n, ll m){
if(n < m) return 0ll;
if(c[n][m]) return c[n][m];
if(n == m || m == 0) return c[n][m] = 1;
return c[n][m] = (C(n - 1, m) + C(n - 1, m - 1)) % mod;
}
ll q_pow(ll a, ll b){
ll ans = 1;while(b){
if(b & 1) ans=ans*a%mod;
b >>= 1;
a = a * a % mod;
}return ans;
}
void work()
{
cin >> n;
f[0][0] = 1;
for(int i = 1; i <= n; ++i){
for(int j = 0; j <= n; ++j){
for(int k = 0; k <= j; ++k){// 枚举第i个人分配的题目数量
if(k != i){
f[i][j] = (f[i][j] + f[i-1][j-k] * C(n - (j - k), k) % mod) % mod;
}
}
}
}
cout << (q_pow(n, n) - f[n][n] + mod) % mod;
}
int main()
{
ios::sync_with_stdio(0);
// int TT;cin>>TT;while(TT--)
work();
return 0;
}