算法训练 奇异的虫群

算法训练 奇异的虫群

算法训练 奇异的虫群

问题描述

在一个奇怪的星球上驻扎着两个虫群A和B,它们用奇怪的方式繁殖着,在t+1时刻A虫群的数量等于t时刻A虫群和B虫群数量之和,t+1时刻B虫群的数量等于t时刻A虫群的数量。由于星际空间的时间维度很广阔,所以t可能很大。OverMind 想知道在t时刻A虫群的数量对 p = 1,000,000,007.取余数的结果。当t=1时 A种群和B种群的数量均为1。

输入格式

测试数据包含一个整数t,代表繁殖的时间。

输出格式

输出一行,包含一个整数,表示对p取余数的结果.

样例输入

10

样例输出

89

数据规模和约定

对于50%的数据 t<=10^9
  对于70%的数据 t<=10^15
  对于100%的数据 t<=10^18

资源限制

时间限制:1.0s 内存限制:256.0MB

问题难点

这道题本来就是一道简单地斐波拉契数列问题,如果你用递归或者循环来做来做,结果肯定就是时间超时,所以我们得用一个特殊的方法:矩阵快速幂。为什么要用这种方法?我们得从头推导一下。

推导

在斐波那契数列之中
f[i] = 1 * f[i-1] + 1 * f[i-2]
f[i-1] = 1 * f[i-1] + 0 * f[i-2];即
在这里插入图片描述
利用数学归纳法可得
在这里插入图片描述
在这里插入图片描述
如果我们要求f(n),则只用求这个方阵的n次方,n次方之后还是一个方阵,方阵的第一行第二个就是f(n);

重点来啦,矩阵快速幂该怎么算!!

从网上找了很多资料,看了很多大佬说的,我也来讲讲自己的思路。
例如我们要算矩阵x的10次方

void Qpow(long long int n)
{
	while(n)
	{
		if(n & 1)
		{
			ans = ans * x;
		}
		x = x * x;
		n >>= 1;
	}
}

其中ans = 1,n= 10(10次方),10(10) = 1010(2);
n的最后一位为0,0&1=0,则

ans = 1,x = x^2,n = 101;

n的最后一位为1,则

ans = x^2, x = x^4, n = 10;

n的最后一位为0,则

ans = x ^2, x = x^8,n = 1;

n的最后一位为1,则

ans = x^10, x = x^16;

退出循环,ans就等于x^10;
当然在真正的操作中ans也得是个矩阵,ans为单位矩阵,值为1;
我们直接定义一个结构体,简化代码量

struct Mat
{
	long long int m[2][2];
};

m的行和列的值就是你要算的n次幂矩阵的行列数,我们在上面已经推导出来斐波拉契数列的对应的矩阵行数和列数都为2;

Mat ans, base;

Mat Mul(Mat x, Mat y)
{
	Mat c;
	for(int i = 0; i < 2; i++)
	{
		for(int j = 0; j < 2; j++)
		{
			c.m[i][j] = 0;
			for(int k = 0; k < 2; k++)
			{
				c.m[i][j] = (c.m[i][j] + x.m[i][k] * y.m[k][j]) % p;
			}
		}
	}
	return c;
}

这里是c是一个临时存储两个矩阵相乘的最后结果的矩阵;
基本分析就差不多了,这个时候我们已经能算出来矩阵的快速幂了。

最终代码

#include<iostream>
using namespace std;

const long long int p = 1000000007;

struct Mat
{
	long long int m[2][2];
};

Mat ans, base;

Mat Mul(Mat x, Mat y)
{
	Mat c;
	for(int i = 0; i < 2; i++)
	{
		for(int j = 0; j < 2; j++)
		{
			c.m[i][j] = 0;
			for(int k = 0; k < 2; k++)
			{
				c.m[i][j] = (c.m[i][j] + x.m[i][k] * y.m[k][j]) % p;
			}
		}
	}
	return c;
}

int Qpow(long long int n)
{
	for(int i = 0; i < 2; i++)
	{
		for(int j = 0; j < 2; j++)
		{
			if(i == j)
			{
				ans.m[i][j] = 1;
			}
			else
			{
				ans.m[i][j] = 0;
			}
			if(i == 1 && j == 1)
			{
				base.m[i][j] = 0;
			}
			else
			{
				base.m[i][j] = 1;
			}
		}
	}//这一段为了初始化ans为单位矩阵,将base初始化为要求的n次幂的矩阵
	
	while(n)
	{
		if(n & 1)
		{
			ans = Mul(ans, base);
		}
		base = Mul(base, base);
		n >>= 1;
	}
	return ans.m[0][0];
}

int main()
{
	long long int n = 0;
	cin >> n;
	cout << Qpow(n);
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值