机器学习性能评估指标

引言:

分类是数据挖掘三大核心技术( 关联规则、分类、聚类) 之一 ,其实质是产生一个目标函数 f , 该函数将输入数据集的属性集 x 映射到已经定义的类标签 y 上。该目标函数通常也被称为分类模型或分类器

机器学习分为三个阶段

  • 第一阶段:学习模型。采用学习算法,通过对训练集进行归纳学习得到分类模型;

  • 第二阶段:测试模型。将已经学习得到的分类模型用于测试集,对测试集中未知类别的实例进行分类。

  • 第三阶段:性能评估。显然,通过测试集产生的分类未必是最佳的,这就导致对测试集的分类可能产生错误。而人们希望尽量得到信呢个最佳的分类模型,就是的对分类器性能评价至关重要。只有通过优秀的评价标准才能选择出性能更好的分类器。

在机器学习、数据挖掘、推荐系统完成建模之后,需要对模型的效果做评价。业内目前常常采用的评价指标有精确率(Precision)、召回率(Recall)、F值(F-Measure)等,下图是不同机器学习算法的评价指标。下文讲对其中某些指标做简要介绍。

machine_learning_performance_evaluation

分类器评估准则

混淆矩阵

目前 ,分类器性能评价标准很多,其中比较常用的主要有准确度或错误率、查全率、查准率和F1等。为了清楚地认识这些评价标准, 首先介绍一下混淆矩阵。

定义

混淆矩阵(Confusion matrix)就是用于总结有指导分类结果的矩阵。沿着主对角线上的项表示正确分类的总数,其他非主对角线的项表示分类的错误数。

二分类的混淆矩阵

classifier_evaluation1

  • True Positive(真正, TP):将正类预测为正类数.
  • True Negative(真负 , TN):将负类预测为负类数.
  • False Positive(假正, FP):将负类预测为正类数 → 误报 (Type I error).
  • False Negative(假负 , FN):将正类预测为负类数 → 漏报 (Type II error).

注:实际正例数(p)=TP+FN;实际负例数(N)=FP+TN;实例总数(C)=P+N。一个混合矩阵已经能够显示出评价分类器性能的一些必要信息。为了更方便地比较不同分类器的性能,从混合矩阵中总结出准确率、精确率、召回率、F-值(F-measure)等。

多类分类的混淆矩阵

定义:对于一个m分的标准分类问题来说,也可以定义如表1所示m×mm分混淆矩阵和每一个类属的Recall、Precision、F-measure和Accuracy值。

classifier_evaluation2

其相应的整个分类器的准确率表达式如下:

accuracy

准确率(accuracy)

  • 定义:正确分类的测试实例个数占测试实例总数的比例,用于衡量模型正确的预测新的或先前未见过的数据的类标号的能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

flybirding10011

谢谢支持啊999

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值